Journal Home > Volume 11 , Issue 6

Silver nanoparticles (AgNPs) with distinct localized surface plasmon resonance (LSPR) absorption spectra can be synthesized using different proteins as templates upon irradiation by light. We utilized the multiple readouts of LSPR signals of AgNPs to construct sensor arrays for pattern recognition of proteins. Room temperature, aqueous solutions, and lack of harsh reducing reagents make the whole process inherently "green". Meanwhile, the strategy efficiently simplified the process of array-receptor preparation and data acquisition, leading to lower time consumption, sample use, and cost. Furthermore, the system can differentiate proteins using flexible and alterable sensor elements by choosing different combinations of LSPR signals at different wavelengths. The principle of the sensor design can also be further extended to differentiate other biomolecules. The study provides a new method to construct feasible, economical, and general nanoparticle-based sensing arrays for pattern recognition.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Biomolecule-templated photochemical synthesis of silver nanoparticles: Multiple readouts of localized surface plasmon resonance for pattern recognition

Show Author's information Fang Pu1Xiang Ran1,3Meng Guan2Yanyan Huang1,3Jinsong Ren1( )Xiaogang Qu1( )
Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resources UtilizationChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022China
Cancer CenterFirst Affiliated HospitalJilin UniversityChangchun130061China
University of Chinese Academy of SciencesBeijing100039China

Abstract

Silver nanoparticles (AgNPs) with distinct localized surface plasmon resonance (LSPR) absorption spectra can be synthesized using different proteins as templates upon irradiation by light. We utilized the multiple readouts of LSPR signals of AgNPs to construct sensor arrays for pattern recognition of proteins. Room temperature, aqueous solutions, and lack of harsh reducing reagents make the whole process inherently "green". Meanwhile, the strategy efficiently simplified the process of array-receptor preparation and data acquisition, leading to lower time consumption, sample use, and cost. Furthermore, the system can differentiate proteins using flexible and alterable sensor elements by choosing different combinations of LSPR signals at different wavelengths. The principle of the sensor design can also be further extended to differentiate other biomolecules. The study provides a new method to construct feasible, economical, and general nanoparticle-based sensing arrays for pattern recognition.

Keywords: pattern recognition, localized surface plasmon resonance, silver nanoparticles, biomolecule, photochemical synthesis

References(34)

1

Wright, A. T.; Anslyn, E. V. Differential receptor arrays and assays for solution-based molecular recognition. Chem. Soc. Rev. 2006, 35, 14-28.

2

Askim, J. R.; Mahmoudi, M.; Suslick, K. S. Optical sensor arrays for chemical sensing: The optoelectronic nose. Chem. Soc. Rev. 2013, 42, 8649-8682.

3

Diehl, K. L.; Anslyn, E. V. Array sensing using optical methods for detection of chemical and biological hazards. Chem. Soc. Rev. 2013, 42, 8596-8611.

4

Chen, W. W.; Li, Q. Z.; Zheng, W. S.; Hu, F.; Zhang, G. X.; Wang, Z.; Zhang, D. Q.; Jiang, X. Y. Identification of bacteria in water by a fluorescent array. Angew. Chem., Int. Ed. 2014, 53, 13734-13739.

5

Rana, S.; Elci, S. G.; Mout, R.; Singla, A. K.; Yazdani, M.; Bender, M.; Bajaj, A.; Saha, K.; Bunz, U. H.; Jirik, F. R. et al. Ratiometric array of conjugated polymers-fluorescent protein provides a robust mammalian cell sensor. J. Am. Chem. Soc. 2016, 138, 4522-4529.

6

Bunz, U. H. F.; Rotello, V. M. Gold nanoparticle-fluorophore complexes: Sensitive and discerning "noses" for biosystems sensing. Angew. Chem., Int. Ed. 2010, 49, 3268-3279.

7

Chou, S. S.; De, M.; Luo, J. Y.; Rotello, V. M.; Huang, J. X.; Dravid, V. P. Nanoscale graphene oxide (nGO) as artificial receptors: Implications for biomolecular interactions and sensing. J. Am. Chem. Soc. 2012, 134, 16725-16733.

8

Pei, H.; Li, J.; Lv, M.; Wang, J. Y.; Gao, J. M.; Lu, J. X.; Li, Y. P.; Huang, Q.; Hu, J.; Fan, C. H. A graphene-based sensor array for high-precision and adaptive target identification with ensemble aptamers. J. Am. Chem. Soc. 2012, 134, 13843-13849.

9

Ran, X.; Pu, F.; Ren, J. S.; Qu, X. G. A CuS-based chemical tongue chip for pattern recognition of proteins and antibiotic-resistant bacteria. Chem. Commun. 2015, 51, 2675-2678.

10

Rana, S.; Le, N. D. B.; Mout, R.; Saha, K.; Tonga, G. Y.; Bain, R. E. S.; Miranda, O. R.; Rotello, C. M.; Rotello, V. M. A multichannel nanosensor for instantaneous readout of cancer drug mechanisms. Nat. Nanotechnol. 2015, 10, 65-69.

11

Pu, F.; Ran, X.; Ren, J. S.; Qu, X. G. Artificial tongue based on metal-biomolecule coordination polymer nanoparticles. Chem. Commun. 2016, 52, 3410-3413.

12

Liu, B. W.; Liu, J. W. Comprehensive screen of metal oxide nanoparticles for DNA adsorption, fluorescence quenching, and anion discrimination. ACS Appl. Mater. Interfaces 2015, 7, 24833-24838.

13

Wu, L.; Ji, H. W.; Guan, Y. J.; Ran, X.; Ren, J. S.; Qu, X. G. A graphene-based chemical nose/tongue approach for the identification of normal, cancerous and circulating tumor cells. NPG Asia Mater. 2017, 9, e356.

14

Yuen, L. H.; Franzini, R. M.; Tan, S. S.; Kool, E. T. Large-scale detection of metals with a small set of fluorescent DNA-like chemosensors. J. Am. Chem. Soc. 2014, 136, 14576-14582.

15

Wu, D. L.; Schanze, K. S. Protein induced aggregation of conjugated polyelectrolytes probed with fluorescence correlation spectroscopy: Application to protein identification. ACS Appl. Mater. Interfaces 2014, 6, 7643-7651.

16

Chen, K.; Shu, Q. H.; Schmittel, M. Design strategies for lab-on-a-molecule probes and orthogonal sensing. Chem. Soc. Rev. 2015, 44, 136-160.

17

Wu, P.; Miao, L. N.; Wang, H. F.; Shao, X. G.; Yan, X. P. A multidimensional sensing device for the discrimination of proteins based on manganese-doped ZnS quantum dots. Angew. Chem., Int. Ed. 2011, 50, 8118-8121.

18

Lu, Y. X.; Kong, H.; Wen, F.; Zhang, S. C.; Zhang, X. R. Lab-on-graphene: Graphene oxide as a triple-channel sensing device for protein discrimination. Chem. Commun. 2013, 49, 81-83.

19

He, Y.; He, X.; Liu, X. Y.; Gao, L. F.; Cui, H. Dynamically tunable chemiluminescence of luminol-functionalized silver nanoparticles and its application to protein sensing arrays. Anal. Chem. 2014, 86, 12166-12171.

20

Pan, L. L.; Sun, S.; Zhang, A. D.; Jiang, K.; Zhang, L.; Dong, C. Q.; Huang, Q.; Wu, A. G.; Lin, H. W. Truly fluorescent excitation-dependent carbon dots and their applications in multicolor cellular imaging and multidimensional sensing. Adv. Mater. 2015, 27, 7782-7787.

21

Motl, N. E.; Smith, A. F.; DeSantis, C. J.; Skrabalak, S. E. Engineering plasmonic metal colloids through composition and structural design. Chem. Soc. Rev. 2014, 43, 3823-3834.

22

Kumar, A.; Kumar, V. Biotemplated inorganic nanostructures: Supramolecular directed nanosystems of semiconductor(s)/ metal(s) mediated by nucleic acids and their properties. Chem. Rev. 2014, 114, 7044-7078.

23

Song, T. J.; Tang, L. H.; Tan, L. H.; Wang, X. J.; Satyavolu, N. S. R.; Xing, H.; Wang, Z. D.; Li, J. H.; Liang, H. J.; Lu, Y. DNA-encoded tuning of geometric and plasmonic properties of nanoparticles growing from gold nanorod seeds. Angew. Chem., Int. Ed. 2015, 54, 8114-8118.

24

Pazos, E.; Sleep, E.; Rubert Pérez, C. M.; Lee, S. S.; Tantakitti, F.; Stupp, S. I. Nucleation and growth of ordered arrays of silver nanoparticles on peptide nanofibers: Hybrid nanostructures with antimicrobial properties. J. Am. Chem. Soc. 2016, 138, 5507-5510.

25

Leng, Y. M.; Fu, L.; Ye, L. Q.; Li, B.; Xu, X. M.; Xing, X. J.; He, J. B.; Song, Y. L.; Leng, C. L.; Guo, Y. M. et al. Protein-directed synthesis of highly monodispersed, spherical gold nanoparticles and their applications in multidimensional sensing. Sci. Rep. 2016, 6, 28900.

26

Huang, J. L.; Lin, L. Q.; Sun, D. H.; Chen, H. M.; Yang, D. P.; Li, Q. B. Bio-inspired synthesis of metal nanomaterials and applications. Chem. Soc. Rev. 2015, 44, 6330-6374.

27

Chiu, C. Y.; Ruan, L. Y.; Huang, Y. Biomolecular specificity controlled nanomaterial synthesis. Chem. Soc. Rev. 2013, 42, 2512-2527.

28

Xing, R. R.; Liu, K.; Jiao, T. F.; Zhang, N.; Ma, K.; Zhang, R. Y.; Zou, Q. L.; Ma, G. H.; Yan, X. H. An injectable self-assembling collagen-gold hybrid hydrogel for combinatorial antitumor photothermal/photodynamic therapy. Adv. Mater. 2016, 28, 3669-3676.

29

Liu, K.; Yuan, C. Q.; Zou, Q. L.; Xie, Z. C.; Yan, X. H. Self-assembled zinc/cystine-based chloroplast mimics capable of photoenzymatic reactions for sustainable fuel synthesis. Angew. Chem., Int. Ed. 2017, 56, 7876-7880.

30

Galloway, J. M.; Staniland, S. S. Protein and peptide biotemplated metal and metal oxide nanoparticles and their patterning onto surfaces. J. Mater. Chem. 2012, 22, 12423-12434.

31

Wang, G. Q.; Nishio, T.; Sato, M.; Ishikawa, A.; Nambara, K.; Nagakawa, K.; Matsuo, Y.; Niikura, K.; Ijiro, K. Inspiration from chemical photography: Accelerated photoconversion of AgCl to functional silver nanoparticles mediated by DNA. Chem. Commun. 2011, 47, 9426-9428.

32

Wang, G. Q.; Mitomo, H.; Matsuo, Y.; Niikura, K.; Maeda, M.; Ijiro, K. DNA-modulated photo-transformation of AgCl to silver nanoparticles: Visiting the formation mechanism. J. Colloid Interface Sci. 2015, 452, 224-234.

33

Kracht, S.; Messerer, M.; Lang, M.; Eckhardt, S.; Lauz, M.; Grobéty, B.; Fromm, K. M.; Giese, B. Electron transfer in peptides: On the formation of silver nanoparticles. Angew. Chem., Int. Ed. 2015, 54, 2912-2916.

34

Wang, P.; Huang, B. B.; Qin, X. Y.; Zhang, X. Y.; Dai, Y.; Wei, J.; Y. Whangbo, M. H. Ag@AgCl: A highly efficient and stable photocatalyst active under visible light. Angew. Chem., Int. Ed. 2008, 47, 7931-7933.

File
12274_2017_1819_MOESM1_ESM.pdf (2.6 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 16 June 2017
Revised: 20 August 2017
Accepted: 22 August 2017
Published: 22 May 2018
Issue date: June 2018

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany 2017

Acknowledgements

Acknowledgements

Financial support was provided by the National Natural Science Foundation of China (Nos. 21210002, 21673223, 21431007, and 21533008), and the Youth Innovation Promotion Association CAS (No. 2014202).

Return