Journal Home > Volume 11 , Issue 4

For the first time, we are reporting a novel type of dual fluorescence temperature-sensitive DNA-templated silver nanocluster (AgNC) pair, which contains two pieces of single-stranded AgNC in proximity through hybridization. Both the chameleon AgNC pairs, A-NCP and B-NCP, possess two bright fluorescence peaks that achieve sensitive variations corresponding to temperature change from 15 to 45 ℃. With the increase in temperature, one of the fluorescence emissions of A-NCP (A-FL570) increases, while the other (A-FL640) decreases. However, both the emissions of B-NCP (B-FL685 and B-FL620) decrease simultaneously. Therefore, A-NCP shows a remarkable fluorescence color variation from orange to yellow, while the fluorescence color of B-NCP changes from orange to colorless, with increase in temperature. Moreover, the temperature responding linear range of A-NCP can be regulated by adjusting the structures and sequences of assistant DNA templates. It is assumed that the two single-stranded segmental AgNCs are integrated together as they are assembled into AgNC pairs, leading to a dramatic variation in fluorescence properties. The temperature-sensitive phenomenon is due to the dehybridization-induced separation of two pieces of segmental AgNC, caused by temperature increase. The temperature-sensitive AgNC pairs have been successful in indicating the temperature of living cells, showing the potential for a new application of silver nanocluster as a nanothermometer with adjustable response range, bringing novel insight into the regulatory mechanism of AgNC fluorescence variation.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Novel dual fluorescence temperature-sensitive chameleon DNA-templated silver nanocluster pair for intracellular thermometry

Show Author's information Weijun Zhou1,2Jinbo Zhu1Ye Teng1Baoji Du1,2Xu Han1Shaojun Dong1,2( )
State Key Laboratory of Electroanalytical ChemistryChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022China
University of Chinese Academy of SciencesBeijing100049China

Abstract

For the first time, we are reporting a novel type of dual fluorescence temperature-sensitive DNA-templated silver nanocluster (AgNC) pair, which contains two pieces of single-stranded AgNC in proximity through hybridization. Both the chameleon AgNC pairs, A-NCP and B-NCP, possess two bright fluorescence peaks that achieve sensitive variations corresponding to temperature change from 15 to 45 ℃. With the increase in temperature, one of the fluorescence emissions of A-NCP (A-FL570) increases, while the other (A-FL640) decreases. However, both the emissions of B-NCP (B-FL685 and B-FL620) decrease simultaneously. Therefore, A-NCP shows a remarkable fluorescence color variation from orange to yellow, while the fluorescence color of B-NCP changes from orange to colorless, with increase in temperature. Moreover, the temperature responding linear range of A-NCP can be regulated by adjusting the structures and sequences of assistant DNA templates. It is assumed that the two single-stranded segmental AgNCs are integrated together as they are assembled into AgNC pairs, leading to a dramatic variation in fluorescence properties. The temperature-sensitive phenomenon is due to the dehybridization-induced separation of two pieces of segmental AgNC, caused by temperature increase. The temperature-sensitive AgNC pairs have been successful in indicating the temperature of living cells, showing the potential for a new application of silver nanocluster as a nanothermometer with adjustable response range, bringing novel insight into the regulatory mechanism of AgNC fluorescence variation.

Keywords: fluorescence, DNA-templated silver nanocluster (AgNC), chameleon, temperature-sensitive

References(40)

1

Yeh, H. -C.; Sharma, J.; Shih, I. -M.; Vu, D. M.; Martinez, J. S.; Werner, J. H. A fluorescence light-up Ag nanocluster probe that discriminates single-nucleotide variants by emission color. J. Am. Chem. Soc. 2012, 134, 11550-11558.

2

Zhang, Y.; Zhu, C. F.; Zhang, L.; Tan, C. L.; Yang, J.; Chen, B.; Wang, L. H.; Zhang, H. DNA-templated silver nanoclusters for multiplexed fluorescent DNA detection. Small 2015, 11, 1385-1389.

3

Xu, M. D.; Gao, Z. Q.; Wei, Q. H.; Chen, G. N.; Tang, D. P. Label-free hairpin DNA-scaffolded silver nanoclusters for fluorescent detection of Hg2+ using exonuclease Ⅲ-assisted target recycling amplification. Biosens. Bioelectron. 2016, 79, 411-415.

4

Del Bonis-O'Donnell, J. T.; Vong, D.; Pennathur, S.; Fygenson, D. K. A universal design for a DNA probe providing ratiometric fluorescence detection by generation of silver nanoclusters. Nanoscale 2016, 8, 14489-14496.

5

Zhu, J. B.; Zhang, L. B.; Teng, Y.; Lou, B. H.; Jia, X. F.; Gu, X. X.; Wang, E. K. G-quadruplex enhanced fluorescence of DNA-silver nanoclusters and their application in bioimaging. Nanoscale 2015, 7, 13224-13229.

6

Jiang, H.; Xu, G.; Sun, Y. M.; Zheng, W. W.; Zhu, X. X.; Wang, B. J.; Zhang, X. J.; Wang, G. F. A "turn-on" silver nanocluster based fluorescent sensor for folate receptor detection and cancer cell imaging under visual analysis. Chem. Commun. 2015, 51, 11810-11813.

7

Shah, P.; Rorvig-Lund, A.; Ben Chaabane, S.; Thulstrup, P. W.; Kjaergaard, H. G.; Fron, E.; Hofkens, J.; Yang, S. W.; Vosch, T. Design aspects of bright red emissive silver nanoclusters/DNA probes for microrna detection. Acs Nano 2012, 6, 8803-8814.

8

Chen, Y. A.; Obliosca, J. M.; Liu, Y. L.; Liu, C.; Gwozdz, M. L.; Yeh, H. -C. Nanocluster beacons enable detection of a single N6-methyladenine. J. Am. Chem. Soc. 2015, 137, 10476-10479.

9

Liu, W. T.; Lai, H.; Huang, R.; Zhao, C. T.; Wang, Y. M.; Weng, X. C.; Zhou, X. DNA methyltransferase activity detection based on fluorescent silver nanocluster hairpin-shaped DNA probe with 5'-C-rich/G-rich-3' tails. Biosens. Bioelectron. 2015, 68, 736-740.

10

Li, T.; Zhang, L. B.; Ai, J.; Dong, S. J.; Wang, E. K. Ion-tuned DNA/Ag fluorescent nanoclusters as versatile logic device. Acs Nano 2011, 5, 6334-6338.

11

Tao, Y.; Li, M. Q.; Ren, J. S.; Qu, X. G. Metal nanoclusters: Novel probes for diagnostic and therapeutic applications. Chem. Soc. Rev. 2015, 44, 8636-8663.

12

O'Neill, P. R.; Young, K.; Schiffels, D.; Fygenson, D. K. Few-atom fluorescent silver clusters assemble at programmed sites on DNA nanotubes. Nano Lett. 2012, 12, 5464-5469.

13

Sharma, J.; Rocha, R. C.; Phipps, M. L.; Yeh, H. -C.; Balatsky, K. A.; Vu, D. M.; Shreve, A. P.; Werner, J. H.; Martinez, J. S. A DNA-templated fluorescent silver nanocluster with enhanced stability. Nanoscale 2012, 4, 4107-4110.

14

New, S. Y.; Lee, S. T.; Su, X. D. DNA-templated silver nanoclusters: Structural correlation and fluorescence modulation. Nanoscale 2016, 8, 17729-17746.

15

Del Bonis-O'Donnell, J. T.; Pennathur, S.; Fygenson, D. K. Changes in spectra and conformation of hairpin DNA-stabilized silver nanoclusters induced by stem sequence perturbations. Langmuir 2016, 32, 569-576.

16

Obliosca, J. M.; Babin, M. C.; Liu, C.; Liu, Y. H.; Chen, Y. A.; Batson, R. A.; Ganguly, M.; Petty, J. T.; Yeh, H. -C. A complementary palette of nanocluster beacons. ACS Nano 2014, 8, 10150-10160.

17

Zhang, M.; Liu, Y. Q.; Yu, C. Y.; Yin, B. C.; Ye, B. C. Multiplexed detection of micrornas by tuning DNA-scaffolded silver nanoclusters. Analyst 2013, 138, 4812-4817.

18

Juul, S.; Obliosca, J. M.; Liu, C.; Liu, Y. L.; Chen, Y. A.; Imphean, D. M.; Knudsen, B. R.; Ho, Y. -P.; Leong, K. W.; Yeh, H. -C. Nanocluster beacons as reporter probes in rolling circle enhanced enzyme activity detection. Nanoscale 2015, 7, 8332-8337.

19

Yeh, H. -C.; Sharma, J.; Han, J. J.; Martinez, J. S.; Werner, J. H. A DNA-silver nanocluster probe that fluoresces upon hybridization. Nano Lett. 2010, 10, 3106-3110.

20

New, S. Y.; Lee, S. T.; Su, X. D. DNA-templated silver nanoclusters: Structural correlation and fluorescence modulation. Nanoscale 2016, 8, 17729-17746.

21

Teng, Y.; Jia, X. F.; Zhang, S.; Zhu, J. B.; Wang, E. K. A nanocluster beacon based on the template transformation of DNA-templated silver nanoclusters. Chem. Commun. 2016, 52, 1721-1724.

22

Yin, B. C.; Ma, J. L.; Le, H. N.; Wang, S. L.; Xu, Z. G.; Ye, B. C. A new mode to light up an adjacent DNA-scaffolded silver probe pair and its application for specific DNA detection. Chem. Commun. 2014, 50, 15991-15994.

23

Ma, J. L.; Yin, B. C.; Ye, B. C. A versatile proximity-dependent probe based on light-up DNA-scaffolded silver nanoclusters. Analyst 2016, 141, 1301-1306.

24

Ma, J. L.; Yin, B. C.; Ye, B. C. DNA template-regulated intergrowth of a fluorescent silver nanocluster emitter pair. RSC Adv. 2015, 5, 98467-98471.

25

Schultz, D.; Gardner, K.; Oemrawsingh, S. S. R.; Markešević, N.; Olsson, K.; Debord, M.; Bouwmeester, D.; Gwinn, E. Evidence for rod-shaped DNA-stabilized silver nanocluster emitters. Adv. Mater. 2013, 25, 2797-2803.

26

Swasey, S. M.; Karimova, N.; Aikens, C. M.; Schultz, D. E.; Simon, A. J.; Gwinn, E. G. Chiral electronic transitions in fluorescent silver clusters stabilized by DNA. ACS Nano 2014, 8, 6883-6892.

27

Copp, S. M.; Bogdanov, P.; Debord, M.; Singh, A.; Gwinn, E. Base motif recognition and design of DNA templates for fluorescent silver clusters by machine learning. Adv. Mater. 2014, 26, 5839-5845.

28

Kucsko, G.; Maurer, P. C.; Yao, N. Y.; Kubo, M.; Noh, H. J.; Lo, P. K.; Park, H.; Lukin, M. D. Nanometre-scale thermometry in a living cell. Nature 2013, 500, 54-58.

29

Shang, L.; Stockmar, F.; Azadfar, N.; Nienhaus, G. U. Intracellular thermometry by using fluorescent gold nanoclusters. Angew. Chem., Int. Ed. 2013, 52, 11154-11157.

30

Wang, C.; Ling, L.; Yao, Y. G.; Song, Q. J. One-step synthesis of fluorescent smart thermo-responsive copper clusters: A potential nanothermometer in living cells. Nano Res. 2015, 8, 1975-1986.

31

Gui, R. J.; Wan, A. J.; Liu, X. F.; Jin, H. Intracellular fluorescent thermometry and photothermal-triggered drug release developed from gold nanoclusters and doxorubicin dual-loaded liposomes. Chem. Commun. 2014, 50, 1546-1548.

32

Wang, C. X.; Huang, Y. J.; Lin, H. H.; Xu, Z. Z.; Wu, J. P.; Humphrey, M. G.; Zhang, C. Gold nanoclusters based dual-emission hollow TiO2 microsphere for ratiometric optical thermometry. RSC Adv. 2015, 5, 61586-61592.

33

Ye, F. M.; Wu, C. F.; Jin, Y. H.; Chan, Y. H.; Zhang, X. J.; Chiu, D. T. Ratiometric temperature sensing with semiconducting polymer dots. J. Am. Chem. Soc. 2011, 133, 8146-8149.

34

Oemrawsingh, S. S. R.; Markešević, N.; Gwinn, E. G.; Eliel, E. R.; Bouwmeester, D. Spectral properties of individual DNA-hosted silver nanoclusters at low temperatures. J. Phys. Chem. C. 2012, 116, 25568-25575.

35

Zhao, T. T.; Chen, Q. Y.; Yang, H. Spectroscopic study on the formation of DNA-Ag clusters and its application in temperature sensitive vehicles of DOX. Spectrochim. Spectrochim. Acta A: Mol. Biomol. Spectrosc. 2015, 137, 66-69.

36

Ganguly, M.; Bradsher, C.; Goodwin, P.; Petty, J. T. DNA-directed fluorescence switching of silver clusters. J. Phys. Chem. C. 2015, 119, 27829-27837.

37

Petty, J. T.; Nicholson, D. A.; Sergev, O. O.; Graham, S. K. Near-infrared silver cluster optically signaling oligonucleotide hybridization and assembling two DNA hosts. Anal. Chem. 2014, 86, 9220-9228.

38

Dembska, A. The analytical and biomedical potential of cytosine-rich oligonucleotides: A review. Anal. Chim. Acta 2016, 930, 1-12.

39

Bhaysar-Jog, Y. P.; Van Dornshuld, E.; Brooks, T. A.; Tschumper, G. S.; Wadkins, R. M. Epigenetic modification, dehydration, and molecular crowding effects on the thermodynamics of i-Motif structure formation from C-rich DNA. Biochemistry 2014, 53, 1586-1594.

40

Ma, K.; Wang, H.; Li, X.; Xu, B.; Tian, W. J. Turn-on sensing for Ag+ based on AIE-active fluorescent probe and cytosine-rich DNA. Anal. Bioanal. Chem. 2015, 407, 2625-2630.

File
12274_2017_1817_MOESM1_ESM.pdf (3.5 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 15 May 2017
Revised: 21 August 2017
Accepted: 22 August 2017
Published: 19 March 2018
Issue date: April 2018

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany 2017

Acknowledgements

Acknowledgements

This work was supported by National Natural Science Foundation of China (No. 21375123) and The Ministry of Science and Technology of China (No. 216YFA0203201).

Return