Journal Home > Volume 11 , Issue 4

As the most promising alternative to traditional indium tin oxide (ITO), silver nanowire (AgNW) composite transparent electrodes with improved stabilities compared with that of the pristine AgNWs networks have been demonstrated in various devices. However, a stable AgNW/polymer composite as the bottom electrode for perovskite solar cells has not yet been reported. Here, a long-term stable, smooth AgNW composite with an antioxidant-modified chitosan polymer was developed. The modified polymer can effectively protect pristine AgNWs from side reactions with perovskite, whereas it does not block the carrier drift through the interface of the insulating polymer. The as-prepared AgNW/polymer composite electrode exhibited a root mean square roughness below 10 nm at a scan size of 50 μm × 50 μm, and its original sheet resistance did not change obviously after aging at 85 ℃ for 40 days in air. As a result, the perovskite solar cell employing the composite as the bottom electrode yielded a power conversion efficiency of 7.9%, which corresponds to nearly 75% of that of the reference device with an ITO electrode.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Long-term stable silver nanowire transparent composite as bottom electrode for perovskite solar cells

Show Author's information Yunxia Jin1,2Yong Sun1Kaiqing Wang1Yani Chen1Ziqi Liang1Yuxi Xu2( )Fei Xiao1( )
Department of Materials ScienceFudan University, 220 Handan RoadShanghai200433China
Department of Macromolecular ScienceFudan University, 220 Handan RoadShanghai200433China

Abstract

As the most promising alternative to traditional indium tin oxide (ITO), silver nanowire (AgNW) composite transparent electrodes with improved stabilities compared with that of the pristine AgNWs networks have been demonstrated in various devices. However, a stable AgNW/polymer composite as the bottom electrode for perovskite solar cells has not yet been reported. Here, a long-term stable, smooth AgNW composite with an antioxidant-modified chitosan polymer was developed. The modified polymer can effectively protect pristine AgNWs from side reactions with perovskite, whereas it does not block the carrier drift through the interface of the insulating polymer. The as-prepared AgNW/polymer composite electrode exhibited a root mean square roughness below 10 nm at a scan size of 50 μm × 50 μm, and its original sheet resistance did not change obviously after aging at 85 ℃ for 40 days in air. As a result, the perovskite solar cell employing the composite as the bottom electrode yielded a power conversion efficiency of 7.9%, which corresponds to nearly 75% of that of the reference device with an ITO electrode.

Keywords: stability, silver nanowire, perovskite solar cell, ascorbic-acid-modified chitosan, transparent composite electrode

References(54)

1

Li, L.; Yu, Z. B.; Hu, W. L.; Chang, C. H.; Chen, Q.; Pei, Q. B. Efficient flexible phosphorescent polymer light-emitting diodes based on silver nanowire-polymer composite electrode. Adv. Mater. 2011, 23, 5563-5567.

2

Ye, S. R.; Rathmell, A. R.; Chen, Z. F.; Stewart, I. E.; Wiley, B. J. Metal nanowire networks: The next generation of transparent conductors. Adv. Mater. 2014, 26, 6670-6687.

3

Bao, Z. A.; Chen, X. D. Flexible and stretchable devices. Adv. Mater. 2016, 28, 4177-4179.

4

dos Reis Benatto, G. A.; Roth, B.; Corazza, M.; Søndergaard, R. R.; Gevorgyan, S. A.; Jørgensen, M.; Krebs, F. C. Roll-to-roll printed silver nanowires for increased stability of flexible ITO-free organic solar cell modules. Nanoscale 2016, 8, 318-326.

5

Huang, Y.; Liao, S. Y.; Ren, J.; Khalid, B.; Peng, H. L.; Wu, H. A transparent, conducting tape for flexible electronics. Nano Res. 2016, 9, 917-924.

6

Sannicolo, T.; Lagrange, M.; Cabos, A.; Celle, C.; Simonato, J. P.; Bellet, D. Metallic nanowire-based transparent electrodes for next generation flexible devices: A review. Small 2016, 12, 6052-6075.

7

Zhang, L. W.; Zhang, L. J.; Qiu, Y. J.; Ji, Y.; Liu, Y.; Liu, H.; Li, G. J.; Guo, Q. Q. Improved performance by SiO2 hollow nanospheres for silver nanowire-based flexible transparent conductive films. ACS Appl. Mater. Interfaces 2016, 8, 27055-27063.

8

Wang, J. J.; Fang, Z. Q.; Zhu, H. L.; Gao, B. Y.; Garner, S.; Cimo, P.; Barcikowski, Z.; Mignerey, A.; Hu, L. B. Flexible, transparent, and conductive defrosting glass. Thin Solid Films 2014, 556, 13-17.

9

Bob, B.; Machness, A.; Song, T. B.; Zhou, H. P.; Chung, C. -H.; Yang, Y. Silver nanowires with semiconducting ligands for low-temperature transparent conductors. Nano Res. 2016, 9, 392-400.

10

Lu, H. F.; Zhang, D.; Cheng, J. Q.; Liu, J.; Mao, J.; Choy, W. C. H. Locally welded silver nano-network transparent electrodes with high operational stability by a simple alcohol-based chemical approach. Adv. Funct. Mater. 2015, 25, 4211-4218.

11

Zilberberg, K.; Gasse, F.; Pagui, R.; Polywka, A.; Behrendt, A.; Trost, S.; Heiderhoff, R.; Görrn, P.; Riedl, T. Highly robust indium-free transparent conductive electrodes based on composites of silver nanowires and conductive metal oxides. Adv. Funct. Mater. 2014, 24, 1671-1678.

12

Huang, G. W.; Xiao, H. M.; Fu, S. Y. Wearable electronics of silver-nanowire/poly(dimethylsiloxane) nanocomposite for smart clothing. Sci. Rep. 2015, 5, 13971.

13

Garnett, E. C.; Cai, W. S.; Cha, J. J.; Mahmood, F.; Connor, S. T.; Greyson Christoforo, M.; Cui, Y.; McGehee, M. D.; Brongersma, M. L. Self-limited plasmonic welding of silver nanowire junctions. Nat. Mater. 2012, 11, 241-249.

14

Huang, Q. J.; Shen, W. F.; Fang, X. Z.; Chen, G. F.; Guo, J. C.; Xu, W.; Tan, R. Q.; Song, W. J. Highly flexible and transparent film heaters based on polyimide films embedded with silver nanowires. RSC Adv. 2015, 5, 45836-45843.

15

Park, Y.; Bormann, L.; Müller-Meskamp, L.; Vandewal, K.; Leo, K. Efficient flexible organic photovoltaics using silver nanowires and polymer based transparent electrodes. Org. Electron. 2016, 36, 68-72.

16

Yu, Z. B.; Li, L.; Zhang, Q. W.; Hu, W. L.; Pei, Q. B. Silver nanowire-polymer composite electrodes for efficient polymer solar cells. Adv. Mater. 2011, 23, 4453-4457.

17

Margulis, G. Y.; Christoforo, M. G.; Lam, D.; Beiley, Z. M.; Bowring, A. R.; Bailie, C. D.; Salleo, A.; McGehee, M. D. Spray deposition of silver nanowire electrodes for semitransparent solid-state dye-sensitized solar cells. Adv. Energy Mater. 2013, 3, 1657-1663.

18

Singh, M.; Jiu, J. T.; Sugahara, T.; Suganuma, K. Thin-film copper indium gallium selenide solar cell based on low-temperature all-printing process. ACS Appl. Mater. Interfaces 2014, 6, 16297-16303.

19

Bailie, C. D.; Christoforo, M. G.; Mailoa, J. P.; Bowring, A. R.; Unger, E. L.; Nguyen, W. H.; Burschka, J.; Pellet, N.; Lee, J. Z.; Gratzel, M. et al. Semi-transparent perovskite solar cells for tandems with silicon and CIGS. Energ. Environ. Sci. 2015, 8, 956-963.

20

Knight, M. W.; van de Groep, J.; Bronsveld, P. C. P.; Sinke, W. C.; Polman, A. Soft imprinted Ag nanowire hybrid electrodes on silicon heterojunction solar cells. Nano Energy 2016, 30, 398-406.

21

Aurang, P.; Doganay, D.; Bek, A.; Turan, R.; Unalan, H. E. Silver nanowire networks as transparent top electrodes for silicon solar cells. Solar Energy 2017, 141, 110-117.

22

Ansari, M. O.; Khan, M. M.; Ansari, S. A.; Raju, K.; Lee, J.; Cho, M. H. Enhanced thermal stability under DC electrical conductivity retention and visible light activity of Ag/TiO2@polyaniline nanocomposite film. ACS Appl. Mater. Interfaces 2014, 6, 8124-8133.

23

Kim, A. Y.; Kim, M. K.; Hudaya, C.; Park, J. H.; Byun, D.; Lim, J. C.; Lee, J. K. Oxidation-resistant hybrid metal oxides/metal nanodots/silver nanowires for high performance flexible transparent heaters. Nanoscale 2016, 8, 3307-3313.

24

Idier, J.; Neri, W.; Labrugère, C.; Ly, I.; Poulin, P.; Backov, R. Modified silver nanowire transparent electrodes with exceptional stability against oxidation. Nanotechnology 2016, 27, 105705.

25

Song, T. B.; Rim, Y. S.; Liu, F. M.; Bob, B.; Ye, S. L.; Hsieh, Y. T.; Yang, Y. Highly robust silver nanowire network for transparent electrode. ACS Appl. Mater. Interfaces 2015, 7, 24601-24607.

26

Hong, S.; Lee, H.; Lee, J.; Kwon, J.; Han, S.; Suh, Y. D.; Cho, H.; Shin, J.; Yeo, J.; Ko, S. H. Highly stretchable and transparent metal nanowire heater for wearable electronics applications. Adv. Mater. 2015, 27, 4744-4751.

27

Han, J.; Yuan, S.; Liu, L.; Qiu, X. F.; Gong, H. B.; Yang, X. P.; Li, C. C.; Hao, Y. F.; Cao, B. Q. Fully indium-free flexible Ag nanowires/ZnO: F composite transparent conductive electrodes with high haze. J. Mater. Chem. A 2015, 3, 5375-5385.

28

Kim, A.; Lee, H.; Kwon, H. C.; Jung, H. S.; Park, N. G.; Jeong, S.; Moon, J. Fully solution-processed transparent electrodes based on silver nanowire composites for perovskite solar cells. Nanoscale 2016, 8, 6308-6316.

29

Liu, Y. S.; Feng, J.; Ou, X. L.; Cui, H. F.; Xu, M.; Sun, H. B. Ultrasmooth, highly conductive and transparent PEDOT: PSS/silver nanowire composite electrode for flexible organic light-emitting devices. Org. Electron. 2016, 31, 247-252.

30

Kim, S.; Sanyoto, B.; Park, W. T.; Kim, S.; Mandal, S.; Lim, J. C.; Noh, Y. Y.; Kim, J. H. Purification of PEDOT: PSS by ultrafiltration for highly conductive transparent electrode of all-printed organic devices. Adv. Mater. 2016, 28, 10149-10154.

31

Noh, Y. J.; Kim, S. S.; Kim, T. W.; Na, S. I. Cost-effective ITO-free organic solar cells with silver nanowire-PEDOT: PSS composite electrodes via a one-step spray deposition method. Sol. Energy Mater. Sol. C. 2014, 120, 226-230.

32

Xu, Y. H.; Liu, J. Q. Graphene as transparent electrodes: Fabrication and new emerging applications. Small 2016, 12, 1400-1419.

33

Zheng, Q. B.; Li, Z. G.; Yang, J. H.; Kim, J. K. Graphene oxide-based transparent conductive films. Prog. Mater. Sci. 2014, 64, 200-247.

34

Lee, H.; Kim, M.; Kim, I.; Lee, H. Flexible and stretchable optoelectronic devices using silver nanowires and graphene. Adv. Mater. 2016, 28, 4541-4548.

35

Song, Y.; Fang, W. J.; Brenes, R.; Kong, J. Challenges and opportunities for graphene as transparent conductors in optoelectronics. Nano Today 2015, 10, 681-700.

36

Liang, J. J.; Li, L.; Tong, K.; Ren, Z.; Hu, W.; Niu, X. F.; Chen, Y. S.; Pei, Q. B. Silver nanowire percolation network soldered with graphene oxide at room temperature and its application for fully stretchable polymer light-emitting diodes. ACS Nano 2014, 8, 1590-1600.

37

Jurewicz, I.; Fahimi, A.; Lyons, P. E.; Smith, R. J.; Cann, M.; Large, M. L.; Tian, M. W.; Coleman, J. N.; Dalton, A. B. Insulator-conductor type transitions in graphene-modified silver nanowire networks: A route to inexpensive transparent conductors. Adv. Funct. Mater. 2014, 24, 7580-7587.

38

Xu, Q. J.; Song, T.; Cui, W.; Liu, Y. Q.; Xu, W. D.; Lee, S. T.; Sun, B. Q. Solution-processed highly conductive PEDOT: PSS/AgNW/GO transparent film for efficient organic-Si hybrid solar cells. ACS Appl. Mater. Interfaces 2015, 7, 3272-3279.

39

Dong, H.; Wu, Z. X.; Jiang, Y. Q.; Liu, W. H.; Li, X.; Jiao, B.; Abbas, W.; Hou, X. A flexible and thin graphene/silver nanowires/polymer hybrid transparent electrode for optoelectronic devices. ACS Appl. Mater. Interfaces 2016, 8, 31212-31221.

40

Hu, L. B.; Kim, H. S.; Lee, J. Y.; Peumans, P.; Cui, Y. Scalable coating and properties of transparent, flexible, silver nanowire electrodes. ACS Nano 2010, 4, 2955-2963.

41

Hu, M. J.; Gao, J. F.; Dong, Y. C.; Li, K.; Shan, G. C.; Yang, S. L.; Li, R. K. Y. Flexible transparent PES/silver nanowires/PET sandwich-structured film for high-efficiency electromagnetic interference shielding. Langmuir 2012, 28, 7101-7106.

42

Chenite, A.; Chaput, C.; Wang, D.; Combes, C.; Buschmann, M. D.; Hoemann, C. D.; Leroux, J. C.; Atkinson, B. L.; Binette, F.; Selmani, A. Novel injectable neutral solutions of chitosan form biodegradable gels in situ. Biomaterials 2000, 21, 2155-2161.

43

Jin, Y. X.; Wang, K. Q.; Cheng, Y. R.; Pei, Q. B.; Xu, Y. X.; Xiao, F. Removable large-area ultrasmooth silver nanowire transparent composite electrode. ACS Appl. Mater. Interfaces 2017, 9, 4733-4741.

44

Jin, Y. X.; Deng, D. Y.; Cheng, Y. R.; Kong, L. Q.; Xiao, F. Annealing-free and strongly adhesive silver nanowire networks with long-term reliability by introduction of a nonconductive and biocompatible polymer binder. Nanoscale 2014, 6, 4812-4818.

45

Jiu, J. T.; Wang, J.; Sugahara, T.; Nagao, S.; Nogi, M.; Koga, H.; Suganuma, K.; Hara, M.; Nakazawa, E.; Uchid, H. The effect of light and humidity on the stability of silver nanowire transparent electrodes. RSC Adv. 2015, 5, 27657-27664.

46

Mayousse, C.; Celle, C.; Fraczkiewicz, A.; Simonato, J. P. Stability of silver nanowire based electrodes under environmental and electrical stresses. Nanoscale 2015, 7, 2107-2115.

47

Deng, B.; Hsu, P. C.; Chen, G. C.; Chandrashekar, B. N.; Liao, L.; Ayitimuda, Z.; Wu, J. X.; Guo, Y. F.; Lin, L.; Zhou, Y. et al. Roll-to-roll encapsulation of metal nanowires between graphene and plastic substrate for high-performance flexible transparent electrodes. Nano Lett. 2015, 15, 4206-4213.

48

Marzbanrad, E.; Rivers, G.; Peng, P.; Zhao, B. X.; Zhou, N. Y. How morphology and surface crystal texture affect thermal stability of a metallic nanoparticle: the case of silver nanobelts and pentagonal silver nanowires. Phys. Chem. Chem. Phys. 2015, 17, 315-324.

49

Peng, J. J.; Sun, Y.; Chen, Y. N.; Yao, Y.; Liang, Z. Q. Light and thermally induced evolutional charge transport in CH3NH3PbI3 perovskite solar cells. ACS Energy Lett. 2016, 1, 1000-1006.

50

Sun, Q. J.; Lee, S. J.; Kang, H.; Gim, Y.; Park, H. S.; Cho, J. H. Positively-charged reduced graphene oxide as an adhesion promoter for preparing a highly-stable silver nanowire film. Nanoscale 2015, 7, 6798-6804.

51

Liu, G. S.; Liu, C.; Chen, H. J.; Cao, W.; Qiu, J. S.; Shieh, H. D.; Yang, B. R. Electrically robust silver nanowire patterns transferrable onto various substrates. Nanoscale 2016, 8, 5507-5515.

52

Kim, S.; Kim, S. Y.; Kim, J.; Kim, J. H. Highly reliable AgNW/PEDOT: PSS hybrid films: Efficient methods for enhancing transparency and lowering resistance and haziness. J. Mater. Chem. C 2014, 2, 5636-5644.

53

Choi, D. Y.; Kang, H. W.; Sung, H. J.; Kim, S. S. Annealing-free, flexible silver nanowire-polymer composite electrodes via a continuous two-step spray-coating method. Nanoscale 2013, 5, 977-983.

54

Hirai, A.; Odani, H.; Nakajima, A. Determination of degree of deacetylation of chitosan by 1H NMR spectroscopy. Polym. Bull. 1991, 26, 87-94.

File
12274_2017_1816_MOESM1_ESM.pdf (675 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 10 March 2017
Revised: 19 August 2017
Accepted: 21 August 2017
Published: 19 March 2018
Issue date: April 2018

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany 2017

Acknowledgements

Acknowledgements

This study was sponsored by 59th China Postdoctoral Science Foundation (No. 2016M590318), Special Financial Grant from China Postdoctoral Science Foundation (No. 2017T100270), National Natural Science Foundation of China (Nos. 51603043 and 51673042), and the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning (No. TP2015002).

Return