AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Graphene oxide as a water transporter promoting germination of plants in soil

Yijia HeRuirui HuYujia ZhongXuanliang ZhaoQiao ChenHongwei Zhu( )
State Key Laboratory of New Ceramics and Fine ProcessingSchool of Materials Science and Engineeringand Center for Nano and Micro MechanicsTsinghua UniversityBeijing100084China
Show Author Information

Graphical Abstract

Abstract

Graphene oxide (GO) is a graphene derivative bearing various oxygen-containing functional groups attached to the basal plane and to the edges of the graphene lattice and hence has a unique structure in which numerous hydrophobic sp2 clusters are isolated within the hydrophilic sp3 C–O matrix. In this study, the hydrophilic nature and water-transporting properties of GO were exploited to promote germination and growth of plants. It was found that a low dose of GO significantly promoted the germination of spinach and chive in soil. The oxygen-containing functional groups of GO collected water, and the hydrophobic sp2 domains transported water to the seeds to accelerate the germination of plants. The strong interaction between GO and the surfaces of soil grains stabilized GO in the soil and prevented dissipation of GO. In addition, no GO was detected either on the surface or inside the cells of plants; this finding confirmed that GO was not phytotoxic. Therefore, GO may serve as a promising nontoxic additive to increase a plant yield.

Electronic Supplementary Material

Download File(s)
12274_2017_1810_MOESM1_ESM.pdf (2.9 MB)

References

1

Wu, Z. S. ; Zhou, G. M. ; Yin, L. C. ; Ren, W. C. ; Li, F. ; Cheng, H. M. Graphene/metal oxide composite electrode materials for energy storage. Nano Energy 2012, 1, 107–131.

2

Chen, Z. H. ; Lin, Y. M. ; Rooks, M. J. ; Avouris, P. Graphene nano-ribbon electronics. Phys. E: Low-dimens. Syst. Nanostruct. 2007, 40, 228–232.

3

Valentini, F. ; Carbone, M. ; Palleschi, G. Carbon nanostructured materials for applications in nano-medicine, cultural heritage, and electrochemical biosensors. Anal. Bioanal. Chem. 2013, 405, 451–465.

4

Guz, A. N. ; Rushchitskii, Y. Y. Nanomaterials: On the mechanics of nanomaterials. Int. Appl. Mech. 2003, 39, 1271–1293.

5

Kole, C. ; Kumar, D. S. ; Khodakovskaya, M. V. Plant Nanotechnology: Principles and Practices; Springer: Switzerland, 2016.

6

El-Temsah, Y. S. ; Joner, E. J. Impact of Fe and Ag nanoparticles on seed germination and differences in bioavailability during exposure in aqueous suspension and soil. Environ. Toxicol. 2012, 27, 42–49.

7

Barrena, R. ; Casals, E. ; Colón, J. ; Font, X. ; Sánchez, A. ; Puntes, V. Evaluation of the ecotoxicity of model nanoparticles. Chemosphere 2009, 75, 850–857.

8

Stampoulis, D. ; Sinha, S. K. ; White, J. C. Assay-dependent phytotoxicity of nanoparticles to plants. Environ. Sci. Technol. 2009, 43, 9473–9479.

9

Arora, S. ; Sharma, P. ; Kumar, S. ; Nayan, R. ; Khanna, P. K. ; Zaidi, M. G. H. Gold-nanoparticle induced enhancement in growth and seed yield of Brassica juncea. Plant Growth Regul. 2012, 66, 303–310.

10

Zheng, L. ; Hong, F. S. ; Lu, S. P. ; Liu, C. Effect of nano-TiO2 on strength of naturally aged seeds and growth of spinach. Biol. Trace. Elem. Res. 2005, 104, 83–92.

11

Khodakovskaya, M. ; Dervishi, E. ; Mahmood, M. ; Xu, Y. ; Li, Z. R. ; Watanabe, F. ; Biris, A. S. Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth. ACS Nano 2009, 3, 3221–3227.

12

Khodakovskaya, M. V. ; de Silva, K. ; Nedosekin, D. A. ; Dervishi, E. ; Biris, A. S. ; Shashkov, E. V. ; Galanzha, E. I. ; Zharov, V. P. Complex genetic, photothermal, and photoacoustic analysis of nanoparticle-plant interactions. Proc. Natl. Acad. Sci. USA 2011, 108, 1028–1033.

13

Lahiani, M. H. ; Dervishi, E. ; Chen, J. H. ; Nima, Z. ; Gaume, A. ; Biris, A. S. ; Khodakovskaya, M. V. Impact of carbon nanotube exposure to seeds of valuable crops. ACS Appl. Mater. Interfaces 2013, 5, 7965–7973.

14

Khodakovskaya, M. V. ; Kim, B. S. ; Kim, J. N. ; Alimohammadi, M. ; Dervishi, E. ; Mustafa, T. ; Cernigla, C. E. Carbon nanotubes as plant growth regulators: Effects on tomato growth, reproductive system, and soil microbial community. Small 2013, 9, 115–123.

15

Taylor, A. F. ; Rylott, E. L. ; Anderson, C. W. N. ; Bruce, N. C. Investigating the toxicity, uptake, nanoparticle formation and genetic response of plants to gold. PLoS One 2014, 9, e93793.

16

Gardea-Torresdey, J. L. ; Gomez, E. ; Peralta-Videa, J. R. ; Parsons, J. G. ; Troiani, H. ; Jose-Yacaman, M. Alfalfa sprouts: A natural source for the synthesis of silver nanoparticles. Langmuir 2003, 19, 1357–1361.

17

Bandyopadhyay, S. ; Plascencia-Villa, G. ; Mukherjee, A. ; Rico, C. M. ; José-Yacamán, M. ; Peralta-Videa, J. R. ; Gardea-Torresdey, J. L. Comparative phytotoxicity of ZnO NPs, bulk ZnO, and ionic zinc onto the alfalfa plants symbiotically associated with Sinorhizobium meliloti in soil. Sci. Total Environ. 2015, 515–516, 60–69.

18

Zhao, L. J. ; Peralta-Videa, J. R. ; Varela-Ramirez, A. ; Castillo-Michel, H. ; Li, C. Q. ; Zhang, J. Y. ; Aguilera, R. J. ; Keller, A. A. ; Gardea-Torresdey, J. L. Effect of surface coating and organic matter on the uptake of CeO2 NPs by corn plants grown in soil: Insight into the uptake mechanism. J. Hazard. Mater. 2012, 225–226, 131–138.

19

Novoselov, K. S. ; Geim, A. K. ; Morozov, S. V. ; Jiang, D. ; Zhang, Y. ; Dubonos, S. V. ; Grigorieva, I. V. ; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.

20

Dreyer, D. R. ; Park, S. ; Bielawski, C. W. ; Ruoff, R. S. The chemistry of graphene oxide. Chem. Soc. Rev. 2010, 39, 228–240.

21

Saltzgaber, G. ; Wojcik, P. ; Sharf, T. ; Leyden, M. R. ; Wardini, J. L. ; Heist, C. A. ; Adenuga, A. A. ; Remcho, V. T. ; Minot, E. D. Scalable graphene field-effect sensors for specific protein detection. Nanotechnol. 2013, 24, 355502.

22

Novoselov, K. S. ; Fal, V. I. ; Colombo, L. ; Gellert, P. R. ; Schwab, M. G. ; Kim, K. A roadmap for graphene. Nature 2012, 490, 192–200.

23

Perreault, F. ; De Faria, A. F. ; Elimelech, M. Environmental applications of graphene-based nanomaterials. Chem. Soc. Rev. 2015, 44, 5861–5896.

24

Hu, X. G. ; Kang, J. ; Lu, K. C. ; Zhou, R. R. ; Mu, L. ; Zhou, Q. X. Graphene oxide amplifies the phytotoxicity of arsenic in wheat. Sci. Rep. 2014, 4, 6122.

25

Begum, P. ; Ikhtiari, R. ; Fugetsu, B. Graphene phytotoxicity in the seedling stage of cabbage, tomato, red spinach, and lettuce. Carbon 2011, 49, 3907–3919.

26

Jiao, J. Z. ; Yuan, C. F. ; Wang, J. ; Xia, Z. L. ; Xie, L. L. ; Chen, F. ; Li, Z. Y. ; Xu, B. B. The role of graphene oxide on tobacco root growth and its preliminary mechanism. J. Nanosci. Nanotechnol. 2016, 16, 12449–12454.

27

Huang, H. B. ; Song, Z. G. ; Wei, N. ; Shi, L. ; Mao, Y. Y. ; Ying, Y. L. ; Sun, L. W. ; Xu, Z. P. ; Peng, X. S. Ultrafast viscous water flow through nanostrand-channelled graphene oxide membranes. Nat. Commun. 2013, 4, 2979.

28

Hu, M. ; Mi, B. X. Enabling graphene oxide nanosheets as water separation membranes. Environ. Sci. Technol. 2013, 47, 3715–3723.

29

Sun, P. Z. ; Liu, H. ; Wang, K. L. ; Zhong, M. L. ; Wu, D. H. ; Zhu, H. W. Ultrafast liquid water transport through graphenebased nanochannels measured by isotope labelling. Chem. Commun. 2015, 51, 3251–3254.

30

Kudin, K. N. ; Ozbas, B. ; Schniepp, H. C. ; Prud'Homme, R. K. ; Aksay, I. A. ; Car, R. Raman spectra of graphite oxide and functionalized graphene sheets. Nano Lett. 2008, 8, 36–41.

31

Ferrari, A. C. ; Meyer, J. C. ; Scardaci, V. ; Casiraghi, C. ; Lazzeri, M. ; Mauri, F. ; Piscanec, S. ; Jiang, D. ; Novoselov, K. S. ; Roth, S. et al. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 2006, 97, 187401.

32

Hu, W. B. ; Peng, C. ; Lv, M. ; Li, X. M. ; Zhang, Y. J. ; Chen, N. ; Fan, C. H. ; Huang, Q. Protein corona-mediated mitigation of cytotoxicity of graphene oxide. ACS Nano 2011, 5, 3693–3700.

33

Wills, R. B. ; Wong, A. W. K. ; Scriven, F. M. ; Greenfield, H. Nutrient composition of Chinese vegetables. J. Agric. Food Chem. 1984, 32, 413–416.

34

Villagarcia, H. ; Dervishi, E. ; de Silva, K. ; Biris, A. S. ; Khodakovskaya, M. V. Surface chemistry of carbon nanotubes impacts the growth and expression of water channel protein in tomato plants. Small 2012, 8, 2328–2334.

35

Asli, S. ; Neumann, P. M. Colloidal suspensions of clay or titanium dioxide nanoparticles can inhibit leaf growth and transpiration via physical effects on root water transport. Plant Cell Environ. 2009, 32, 577–584.

36

Zhu, H. ; Han, J. ; Xiao, J. Q. ; Jin, Y. Uptake, translocation, and accumulation of manufactured iron oxide nanoparticles by pumpkin plants. J. Environ. Monit. 2008, 10, 713–717.

37

Lin, D. H. ; Xing, B. S. Root uptake and phytotoxicity of ZnO nanoparticles. Environ. Sci. Technol. 2008, 42, 5580–5585.

38

Zhang, Z. Y. ; He, X. ; Zhang, H. F. ; Ma, Y. H. ; Zhang, P. ; Ding, Y. Y. ; Zhao, Y. L. Uptake and distribution of ceria nanoparticles in cucumber plants. Metallomics 2011, 3, 816–822.

39

Zhao, G. X. ; Li, J. X. ; Ren, X. M. ; Chen, C. L. ; Wang, X. K. Few-layered graphene oxide nanosheets as superior sorbents for heavy metal ion pollution management. Environ. Sci. Technol. 2011, 45, 10454–10462.

Nano Research
Pages 1928-1937
Cite this article:
He Y, Hu R, Zhong Y, et al. Graphene oxide as a water transporter promoting germination of plants in soil. Nano Research, 2018, 11(4): 1928-1937. https://doi.org/10.1007/s12274-017-1810-1

742

Views

100

Crossref

N/A

Web of Science

98

Scopus

4

CSCD

Altmetrics

Received: 31 May 2017
Revised: 19 August 2017
Accepted: 19 August 2017
Published: 19 March 2018
© Tsinghua University Press and Springer-Verlag GmbH Germany 2017
Return