Journal Home > Volume 11 , Issue 4

Polyaniline nanofibers (PANI NFs) are introduced to construct a wind-driven triboelectric nanogenerator (TENG) as a new power source for self-powered cathodic protection. PANI NFs serve as a friction layer to generate charges by harvesting wind energy as well as a conducting layer to transfer charges in TENG. A PANI NFs-based TENG exhibits a high output performance with a maximum output voltage of 375 V, short current circuit of 248 μA, and corresponding power of 14.5 mW under a wind speed of 15 m/s. Additionally, a self-powered anticorrosion system is constructed by using a PANI-based TENG as the power source. The immersion experiment and electrochemical measurements demonstrate that carbon steel coupled with the wind-driven TENG is effectively protected with an evident open circuit potential drop and negative shift in the corrosion potential. The smart self-powered device is promising in terms of applications to protect metals from corrosion by utilizing wind energy in ambient conditions.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Triboelectrification based on double-layered polyaniline nanofibers for self-powered cathodic protection driven by wind

Show Author's information Siwen Cui1,2Youbin Zheng1Jun Liang1Daoai Wang1( )
State Key Laboratory of Solid LubricationLanzhou Institute of Chemical PhysicsChinese Academy of SciencesLanzhou730000China
University of Chinese Academy of SciencesBeijing100049China

Abstract

Polyaniline nanofibers (PANI NFs) are introduced to construct a wind-driven triboelectric nanogenerator (TENG) as a new power source for self-powered cathodic protection. PANI NFs serve as a friction layer to generate charges by harvesting wind energy as well as a conducting layer to transfer charges in TENG. A PANI NFs-based TENG exhibits a high output performance with a maximum output voltage of 375 V, short current circuit of 248 μA, and corresponding power of 14.5 mW under a wind speed of 15 m/s. Additionally, a self-powered anticorrosion system is constructed by using a PANI-based TENG as the power source. The immersion experiment and electrochemical measurements demonstrate that carbon steel coupled with the wind-driven TENG is effectively protected with an evident open circuit potential drop and negative shift in the corrosion potential. The smart self-powered device is promising in terms of applications to protect metals from corrosion by utilizing wind energy in ambient conditions.

Keywords: triboelectric nanogenerator, self-powered, wind-driven, polyaniline, cathodic protection

References(40)

1

Li, X. G. ; Zhang, D. W. ; Liu, Z. Y. ; Li, Z. ; Du, C. W. ; Dong, C. F. Materials science: Share corrosion date. Nature 2015, 527, 441-442.

2

Panossian, Z. ; de Almeida, N. L. ; de Sousa, R. M. F. ; de Souza Pimenta, G. ; Marques, L. B. S. Corrosion of carbon steel pipes and tanks by concentrated sulfuric acid: A review. Corros. Sci. 2012, 58, 1-11.

3

Varela, F. ; Tan, M. Y. J. ; Forsyth, M. Understanding the effectiveness of cathodic protection under disbonded coatings. Electrochim. Acta 2015, 186, 377-390.

4

Barbalat, M. ; Lanarde, L. ; Caron, D. ; Meyer, M. ; Vittonato, J. ; Castillon, F. ; Fontaine, S. ; Refait, P. Electrochemical study of the corrosion rate of carbon steel in soil: Evolution with time and determination of residual corrosion rates under cathodic protection. Corros. Sci. 2012, 55, 246-253.

5

DeGiorgi, V. G. ; Wimmer, S. A. Geometric details and modeling accuracy requirements for shipboard impressed current cathodic protection system modeling. Eng. Anal. Bound. Elem. 2005, 29, 15-28.

6

Collazo, A. ; Izquierdo, M. ; Nóvoa, X. R. ; Pérez, C. Surface treatment of carbon steel substrates to prevent cathodic delamination. Electrochim. Acta 2007, 52, 7513-7518.

7

Szabó, S. ; Bakos, I. Impressed current cathodic protection. Corros. Rev. 2006, 24, 39-62.

8

Wang, S. H. ; Xie, Y. N. ; Niu, S. M. ; Lin, L. ; Wang, Z. L. Freestanding triboelectric-layer-based nanogenerators for harvesting energy from a moving object or human motion in contact and non-contact modes. Adv. Mater. 2014, 26, 2818-2824.

9

Zhang, H. L. ; Yang, Y. ; Su, Y. J. ; Chen, J. ; Adams, K. ; Lee, S. ; Hu, C. G. ; Wang, Z. L. Triboelectric nanogenerator for harvesting vibration energy in full space and as selfpowered acceleration sensor. Adv. Funct. Mater. 2014, 24, 1401-1407.

10

Khan, U. ; Kim, S. W. Triboelectric nanogenerators for blue energy harvesting. ACS Nano 2016, 10, 6429-6432.

11

Yang, W. Q. ; Chen, J. ; Zhu, G. ; Yang, J. ; Bai, P. ; Su, Y. J. ; Jing, Q. S. ; Cao, X. ; Wang, Z. L. Harvesting energy from the natural vibration of human walking. ACS Nano 2013, 7, 11317-11324.

12

Zhang, L. ; Jin, L. ; Zhang, B. B. ; Deng, W. L. ; Pan, H. ; Tang, J. F. ; Zhu, M. H. ; Yang, W. Q. Multifunctional triboelectric nanogenerator based on porous micro-nickel foam to harvest mechanical energy. Nano Energy 2015, 16, 516-523.

13

Yang, W. Q. ; Chen, J. ; Jing, Q. S. ; Yang, J. ; Wen, X. N. ; Su, Y. J. ; Zhu, G. ; Bai, P. ; Wang, Z. L. 3D stack integrated triboelectric nanogenerator for harvesting vibration energy. Adv. Funct. Mater. 2014, 24, 4090-4096.

14

Wang, S. H. ; Mu, X. J. ; Wang, X. ; Gu, A. Y. ; Wang, Z. L. ; Yang, Y. Elasto-aerodynamics-driven triboelectric nanogenerator for scavenging air-flow energy. ACS Nano 2015, 9, 9554-9563.

15

Quan, Z. C. ; Han, C. B. ; Jiang, T. ; Wang, Z. L. Robust thin films-based triboelectric nanogenerator arrays for harvesting bidirectional wind energy. Adv. Energy Mater. 2016, 6, 1501799.

16

Liu, J. M. ; Cui, N. Y. ; Gu, L. ; Chen, X. B. ; Bai, S. ; Zheng, Y. B. ; Hu, C. X. ; Qin, Y. A three-dimensional integrated nanogenerator for effectively harvesting sound energy from the environment. Nanoscale 2016, 8, 4938-4944.

17

Wang, X. F. ; Niu, S. M. ; Yin, Y. J. ; Yi, F. ; You, Z. ; Wang, Z. L. Triboelectric nanogenerator based on fully enclosed rolling spherical structure for harvesting low-frequency water wave energy. Adv. Energy Mater. 2015, 5, 1501467.

18

Liang, Q. J. ; Yan, X. Q. ; Liao, X. Q. ; Zhang, Y. Integrated multi-unit transparent triboelectric nanogenerator harvesting rain power for driving electronics. Nano Energy 2016, 25, 18-25.

19

Zhang, L. ; Zhang, B. B. ; Chen, J. ; Jin, L. ; Deng, W. L. ; Tang, J. F. ; Zhang, H. T. ; Pan, H. ; Zhu, M. H. ; Yang, W. Q. et al. Lawn structured triboelectric nanogenerators for scavenging sweeping wind energy on rooftops. Adv. Mater. 2016, 28, 1650-1656.

20

Wang, Z. L. Triboelectric nanogenerators as new energy technology and self-powered sensors—Principles, problems and perspectives. Faraday Discuss. 2014, 176, 447-458.

21

Wang, Z. L. ; Chen, J. ; Lin, L. Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors. Energy Environ. Sci. 2015, 8, 2250-2282.

22

Fan, F. R. ; Tang, W. ; Wang, Z. L. Flexible nanogenerators for energy harvesting and self-powered electronics. Adv. Mater. 2016, 28, 4283-4305.

23

Zhang, X. L. ; Zheng, Y. B. ; Wang, D. A. ; Rahman, Z. U. ; Zhou, F. Liquid-solid contact triboelectrification and its use in self-powered nanosensor for detecting organics in water. Nano Energy 2016, 30, 321-329.

24

Yang, Y. ; Zhu, G. ; Zhang, H. L. ; Chen, J. ; Zhong, X. D. ; Lin, Z. H. ; Su, Y. J. ; Bai, P. ; Wen, X. N. ; Wang, Z. L. Triboelectric nanogenerator for harvesting wind energy and as self-powered wind vector sensor system. ACS Nano 2013, 7, 9461-9468.

25

Jin, L. ; Deng, W. L. ; Su, Y. C. ; Xu, Z. ; Meng, H. ; Wang, B. ; Zhang, H. P. ; Zhang, B. B. ; Zhang, L. ; Xiao, X. B. et al. Self-powered wireless smart sensor based on maglev porous nanogenerator for train monitoring system. Nano Energy 2017, 38, 185-192.

26

Xi, Y. ; Guo, H. Y. ; Zi, Y. L. ; Li, X. G. ; Wang, J. ; Deng, J. N. ; Li, S. M. ; Hu, C. G. ; Cao, X. ; Wang, Z. L. Multifunctional TENG for blue energy scavenging and self-powered windspeed sensor. Adv. Energy Mater. 2017, 7, 1602397.

27

Ma, M. Y. ; Liao, Q. L. ; Zhang, G. J. ; Zhang, Z. ; Liang, Q. J. ; Zhang, Y. Self-recovering triboelectric nanogenerator as active multifunctional sensors. Adv. Funct. Mater. 2015, 25, 6489-6494.

28

Zhang, Y. ; Yan, X. Q. ; Yang, Y. ; Huang, Y. H. ; Liao, Q. L. ; Qi, J. J. Scanning probe study on the piezotronic effect in ZnO nanomaterials and nanodevices. Adv. Mater. 2012, 24, 4647-4655.

29

Zhang, Q. ; Liang, Q. J. ; Liao, Q. L. ; Yi, F. ; Zheng, X. ; Ma, M. Y. ; Gao, F. F. ; Zhang, Y. Service behavior of multifunctional triboelectric nanogenerators. Adv. Mater. 2017, 29, 1606703.

30

Wang, S. H. ; Wang, X. ; Wang, Z. L. ; Yang, Y. Efficient scavenging of solar and wind energies in a smart city. ACS Nano 2016, 10, 5696-5700.

31

Jin, L. ; Chen, J. ; Zhang, B. B. ; Deng, W. L. ; Zhang, L. ; Zhang, H. T. ; Huang, X. ; Zhu, M. H. ; Yang, W. Q. ; Wang, Z. L. Self-powered safety helmet based on hybridized nanogenerator for emergency. ACS Nano 2016, 10, 7874-7881.

32

Jeon, S. -B. ; Kim, S. ; Park, S. J. ; Seol, M. -L. ; Kim, D. ; Chang, Y. K. ; Choi, Y. -K. Self-powered electro-coagulation system driven by a wind energy harvesting triboelectric nanogenerator for decentralized water treatment. Nano Energy 2016, 28, 288-295.

33

Zhu, H. R. ; Tang, W. ; Gao, C. Z. ; Han, Y. ; Li, T. ; Cao, X. ; Wang, Z. L. Self-powered metal surface anti-corrosion protection using energy harvested from rain drops and wind. Nano Energy 2015, 14, 193-200.

34

Feng, Y. G. ; Zheng, Y. B. ; Rahman, Z. U. ; Wang, D. A. ; Zhou, F. ; Liu, W. M. Paper-based triboelectric nanogenerators and their application in self-powered anticorrosion and antifouling. J. Mater. Chem. A 2016, 4, 18022-18030.

35

Cui, S. W. ; Zheng, Y. B. ; Liang, J. ; Wang, D. A. Conducting polymer PPy nanowire-based triboelectric nanogenerator and its application for self-powered electrochemical cathodic protection. Chem. Sci. 2016, 7, 6477-6483.

36

Xue, X. Y. ; Fu, Y. M. ; Wang, Q. ; Xing, L. L. ; Zhang, Y. Outputting olfactory bionic electric impulse by PANI/PTFE/PANI sandwich nanostructures and their application as flexible, smelling electronic skin. Adv. Funct. Mater. 2016, 26, 3128-3138.

37

Zhang, B. B. ; Chen, J. ; Jin, L. ; Deng, W. L. ; Zhang, L. ; Zhang, H. T. ; Zhu, M. H. ; Yang, W. Q. ; Wang, Z. L. Rotating-disk-based hybridized electromagnetic-triboelectric nanogenerator for sustainably powering wireless traffic volume sensors. ACS Nano 2016, 10, 6241-6247.

38

Chiou, N. R. ; Lu, C. M. ; Guan, J. J. ; Lee, L. J. ; Epstein, A. J. Growth and alignment of polyaniline nanofibres with superhydrophobic, superhydrophilic and other properties. Nat. Nanotechnol. 2007, 2, 354-357.

39

Diaz, A. F. ; Felix-Navarro, R. M. A semi-quantitative triboelectric series for polymeric materials: The influence of chemical structure and properties. J. Electrostat. 2004, 62, 277-290.

40

Xie, Y. N. ; Wang, S. H. ; Lin, L. ; Jing, Q. S. ; Lin, Z. H. ; Niu, S. M. ; Wu, Z. Y. ; Wang, Z. L. Rotary triboelectric nanogenerator based on a hybridized mechanism for harvesting wind energy. ACS Nano 2013, 7, 7119-7125.

File
12274_2017_1805_MOESM1_ESM.pdf (593.1 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 18 June 2017
Revised: 05 August 2017
Accepted: 15 August 2017
Published: 19 March 2018
Issue date: April 2018

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany 2017

Acknowledgements

Acknowledgements

Thanks for the financial support of the National Natural Science Foundation of China (Nos. 21573259 and 21603242), the outstanding youth fund of Gansu Province (No. 1606RJDA31) and the "Hundred Talents Program" of Chinese Academy of Sciences (D. A. W.).

Return