Journal Home > Volume 11 , Issue 4

The recent development of synthesis processes for three-dimensional (3D) graphene-based structures has tended to focus on continuous improvement of porous nanostructures, doping modification during thin-film fabrication, and mechanisms for building 3D architectures. Here, we synthesized novel snowflake-like Si-O/Si-C nanostructures on 3D graphene/Cu foam by one-step low-pressure chemical vapor deposition (CVD). Through systematic micromorphological characterization, it was determined that the formation mechanism of the nanostructures involved the melting of the Cu foam surface and the subsequent condensation of the resulting vapor, 3D growth of graphene through catalysis in the presence of Cu, and finally, nucleation of the Si-O/Si-C nanostructure in the carbon-rich atmosphere. Thus, by tuning the growth temperature and duration, it should be possible to control the nucleation and evolution of such snowflake-like nanostructures with precision. Electrochemical measurements indicated that the snowflake-like nanostructures showed excellent performance as a material for energy storage. The highest specific capacitance of the Si-O/Si-C nanostructures was ~963.2 mF/cm2 at a scan rate of 1 mV/s. Further, even after 20, 000 sequential cycles, the electrode retained 94.4% of its capacitance.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

One-step synthesis of novel snowflake-like Si-O/Si-C nanostructures on 3D graphene/Cu foam by chemical vapor deposition

Show Author's information Jing Ning1,2,§Dong Wang1,2,§( )Jincheng Zhang1,2( )Xin Feng1,2Ruixia Zhong1,2Jiabo Chen1,2Jianguo Dong1,2Lixin Guo3Yue Hao1,2
The State Key Discipline Laboratory of Wide Band Gap Semiconductor TechnologyXidian UniversityXi'an710071China
Shaanxi Joint Key Laboratory of GrapheneXidian UniversityXi'an710071China
School of Physics and Optoelectronic EngineeringXidian UniversityXi'an710071China

§ Jing Ning and Dong Wang contributed equally to this work.

Abstract

The recent development of synthesis processes for three-dimensional (3D) graphene-based structures has tended to focus on continuous improvement of porous nanostructures, doping modification during thin-film fabrication, and mechanisms for building 3D architectures. Here, we synthesized novel snowflake-like Si-O/Si-C nanostructures on 3D graphene/Cu foam by one-step low-pressure chemical vapor deposition (CVD). Through systematic micromorphological characterization, it was determined that the formation mechanism of the nanostructures involved the melting of the Cu foam surface and the subsequent condensation of the resulting vapor, 3D growth of graphene through catalysis in the presence of Cu, and finally, nucleation of the Si-O/Si-C nanostructure in the carbon-rich atmosphere. Thus, by tuning the growth temperature and duration, it should be possible to control the nucleation and evolution of such snowflake-like nanostructures with precision. Electrochemical measurements indicated that the snowflake-like nanostructures showed excellent performance as a material for energy storage. The highest specific capacitance of the Si-O/Si-C nanostructures was ~963.2 mF/cm2 at a scan rate of 1 mV/s. Further, even after 20, 000 sequential cycles, the electrode retained 94.4% of its capacitance.

Keywords: graphene, chemical vapor deposition (CVD), nanostructures, snowflake-like

References(49)

1

Yang, Q. -H. Interface induced 2D or 3D graphene assembly for energy storage. In Abstract: Papers of the Am. Chem. Soc. 2014, 248, 1155.

2

Fan, X. L.; Chen, X. L.; Dai, L. M. 3D graphene based materials for energy storage. Curr. Opin. Colloid Interface Sci. 2015, 20, 429–438.

3

Qiu, H. -J.; Liu, L.; Wang, Y. Template-directed fabrication of 3D graphene-based composite and their electrochemical energy-related applications. Sci. Bull. 2016, 61, 443–450.

4

Ganesh, E. N.; Kumar, V. V.; Huzefa, E. M. Carbon nano tubes—Overview, simulation of single and multilayer CNTs with it's synthesis and energy storage applications. In Proceedings of 2006 IEEE Conference on Emerging Technologies—Nanoelectronics, Singapore, Singapore, 2006, pp 159–168.

5

Ma, S. B.; Nam, K. W.; Yoon, W. S.; Bak, S. M.; Yang, X. Q.; Cho, B. W.; Kim, K. B. Nano-sized lithium manganese oxide dispersed on carbon nanotubes for energy storage applications. Electrochem. Commun. 2009, 11, 1575–1578.

6

Ying, Y. H. A new generation 3D printed on-chip energy storage devices. In Proceedings of 2016 IEEE International Conference on Electron Devices and Solid-State Circuits (EDSSC 2016), Hong Kong, China, 2016, pp 472–475.

7

Xie, Y. Z.; Liu, Y.; Zhao, Y. D.; Tsang, Y. H.; Lau, S. P.; Huang, H. T.; Chai, Y. Stretchable all-solid-state supercapacitor with wavy shaped polyaniline/graphene electrode. J. Mater. Chem. A 2014, 2, 9142–9149.

8

Zhou, F. C.; Ren, Z. W.; Zhao, Y. D.; Shen, X. P.; Wang, A. W.; Li, Y. Y.; Surya, C.; Chai, Y. Perovskite photovoltachromic supercapacitor with all-transparent electrodes. ACS Nano 2016, 10, 5900–5908.

9

Rolison, D. R.; Long, J. W.; Lytle, J. C.; Fischer, A. E.; Rhodes, C. P.; McEvoy, T. M.; Bourg, M. E.; Lubers, A. M. Multifunctional 3D nanoarchitectures for energy storage and conversion. Chem. Soc. Rev. 2009, 38, 226–252.

10

Badi, N.; Bensaoula, A. Nano-engineered dielectrics for energy storage solutions. Nanotech. 2009, 2, 534–537.

11

Murugan, A. V.; Muraliganth, T.; Ferreira, P. J.; Manthiram, A. Dimensionally modulated, single-crystalline LiMPO4 (M = Mn, Fe, Co, and Ni) with nano-thumblike shapes for high-power energy storage. Inorg. Chem. 2009, 48, 946–952.

12

Ma, S. B. Metal oxide/carbon nanotubes nano-hybrid materials for energy storage applications. In Abstract: Papers of the Am. Chem. Soc. 2010, 240, 1155.

13

Lee, J. Y.; Lee, K. H.; Kim, Y. J.; Ha, J. S.; Lee, S. S.; Son, J. G. Sea-urchin-inspired 3D crumpled graphene balls using simultaneous etching and reduction process for high-density capacitive energy storage. Adv. Funct. Mater. 2015, 25, 3606–3614.

14

Song, R. B.; Jin, H. Y.; Li, X.; Fei, L. F.; Zhao, Y.D.; Huang, H. T.; Chan, H. L. W.; Wang, Y.; Chai, Y. A rectification-free piezo-supercapacitor with a polyvinylidene fluoride separator and functionalized carbon cloth electrodes. J. Mater. Chem. A 2015, 3, 14963–14970.

15

Hu, Y.; Chen, T.; Wang, X. Q.; Ma, L. B.; Chen, R. P.; Zhu, H. F.; Yuan, X.; Yan, C. Z.; Zhu, G. Y.; Lv, H. L. et al. Controlled growth and photoconductive properties of hexagonal SnS2 nanoflakes with mesa-shaped atomic steps. Nano Res. 2017, 10, 1434–1447.

16

Lochala, J. A.; Zhang, H. Z.; Wang, Y. S.; Okolo, O.; Li, X. F.; Xiao, J. Practical challenges in employing graphene for lithium-ion batteries and beyond. Small Methods 2017, 1, 1700099.

17

Xu, J. G.; Zhang, L.; Wang, Y. K.; Chen, T.; Al-Shroofy, M.; Cheng, Y. T. Unveiling the critical role of polymeric binders for silicon negative electrodes in lithium-ion full cells. ACS Appl. Mater. Interfaces 2017, 9, 3562–3569.

18

Ji, J. Y.; Ji, H. X.; Zhang, L. L.; Zhao, X.; Bai, X.; Fan, X. B.; Zhang, F. B.; Ruoff, R. S. Graphene-encapsulated Si on ultrathin-graphite foam as anode for high capacity lithiumion batteries. Adv. Mater. 2013, 25, 4673–4677.

19

Gowda, S. R.; Pushparaj, V.; Herle, S.; Girishkumar, G.; Gordon, J. G.; Gullapalli, H.; Zhan, X. B.; Ajayan, P. M.; Reddy, A. L. M. Three-dimensionally engineered porous silicon electrodes for Li ion batteries. Nano Lett. 2012, 12, 6060–6065.

20

Karki, K.; Epstein, E.; Cho, J. H.; Jia, Z.; Li, T.; Picraux, S. T.; Wang, C. S.; Cumings, J. Lithium-assisted electrochemical welding in silicon nanowire battery electrodes. Nano Lett. 2012, 12, 1392–1397.

21

Yan, Q.; Wang, Z. L.; Zhang, J.; Peng, H.; Chen, X. J.; Hou, H. N.; Liu, C. R. Nickel hydroxide modified silicon nanowires electrode for hydrogen peroxide sensor applications. Electrochim. Acta 2012, 61, 148–153.

22

Lee, S. E.; Kim, H. J.; Kim, H.; Park, J. H.; Choi, D. G. Highly robust silicon nanowire/graphene core–shell electrodes without polymeric binders. Nanoscale 2013, 5, 8986–8991.

23

Cetinkaya, T.; Tocoglu, U.; Cevher, O.; Guler, M. O.; Akbulut, H. Electrochemical performance of silicon/MWCNT composite electrodes for lithium ion batteries. Acta Phys. Polonic. A 2014, 125, 285–287.

24

Kim, G.; Jeong, S.; Shin, J. H.; Cho, J.; Lee, H. 3D amorphous silicon on nanopillar copper electrodes as anodes for high-rate lithium-ion batteries. ACS Nano 2014, 8, 1907–1912.

25

Ahn, H. S.; Bard, A. J. Single-nanoparticle collision events: Tunneling electron transfer on a titanium dioxide passivated n-silicon electrode. Angew. Chem., Int. Ed. 2015, 54, 13753–13757.

26

Chen, B. B.; Chu, S. Y.; Cai, R.; Zhou, J. Q. The effect of diffusion induced fatigue stress on capacity loss in nano silicon particle electrodes during cycling. J. Electrochem. Soc 2016, 163, A2592–A2599.

27

Iaboni, D. S. M.; Obrovac, M. N. Li15Si4 formation in silicon thin film negative electrodes. J. Electrochem. Soc 2016, 163, A255–A261.

28

Wang, X. L.; Li, G.; Seo, M. H.; Lui, G.; Hassan, F. M.; Feng, K.; Xiao, X. C.; Chen, Z. W. Carbon-coated silicon nanowires on carbon fabric as self-supported electrodes for flexible lithium-ion batteries. ACS Appl. Mater. Interfaces 2017, 9, 9551–9558.

29

Gao, J.; Yu, J. Y.; Zhou, L.; Muhammad, J.; Dong, X. L.; Wang, Y. N.; Yu, H. T.; Quan, X.; Li, S. J.; Jung, Y. G. Interface evolution in the platelet-like SiC@C and SiC@SiO2 monocrystal nanocapsules. Nano Res. 2017, 10, 2644–2656.

30

Dai, W.; Yu, J. H.; Wang, Y.; Song, Y. Z.; Alam, F. E.; Nishimura, K.; Lin, C. T.; Jiang, N. Enhanced thermal conductivity for polyimide composites with a three-dimensional silicon carbide nanowire@graphene sheets filler. J. Mater. Chem. A 2015, 3, 4884–4891.

31

Jiao, M. L.; Liu, K. L.; Shi, Z. Q.; Wang, C. Y. SiO2/carbon composite microspheres with hollow core–shell structure as a high-stability electrode for lithium-ion batteries. Chemelectrochem 2017, 4, 542–549.

32

Nielsen, O. H.; Sethna, J. P.; Stoltze, P.; Jacobsen, K. W.; Nørskov, J. K. Melting a copper cluster: Critical-droplet theory. EPL 1994, 26, 51–56.

33

Giulian, R.; Kluth, P.; Araujo, L. L.; Llewellyn, D. J.; Ridgway, M. C. Pt nanocrystals formed by ion implantation: A defect-mediated nucleation process. Appl. Phys. Lett. 2007, 91, 093115.

34

Kamble, M.; Waman, V.; Mayabadi, A.; Funde, A.; Sathe, V.; Shripathi, T.; Pathan, H.; Jadkar, S. Synthesis of cubic nanocrystalline silicon carbide (3C-SiC) films by HW-CVD method. Silicon 2017, 9, 421–429.

35

Mishra, G.; Behera, G. C.; Singh, S. K.; Parida, K. M. Liquid phase esterification of acetic acid over WO3 promoted β-SiC in a solvent free system. Dalton Trans. 2012, 41, 14299–14308.

36

Wang, K. Laser based fabrication of graphene. In Advances in Graphene Science; Aliofkhazraei, M., Ed.; In Tech: Rijeka, 2013; Ch. 04.

37

Zhao, M. Q.; Zhang, Q.; Huang, J. Q.; Tian, G. L.; Nie, J. Q.; Peng, H. J.; Wei, F. Unstacked double-layer templated graphene for high-rate lithium–sulphur batteries. Nat. Commun. 2014, 5, 3410.

38

De Padova, P.; Ottaviani, C.; Quaresima, C.; Olivieri, B.; Imperatori, P.; Salomon, E.; Angot, T.; Quagliano, L.; Romano, C.; Vona, A. et al. 24 h stability of thick multilayer silicene in air. 2D Mater. 2014, 1, 021003.

39

Chen, J. H.; Liu, W. N.; Yang, T.; Li, B.; Su, J. D.; Hou, X. M.; Chou, K. C. A facile synthesis of a three-dimensional flexible 3C-SiC sponge and its wettability. Cryst. Growth Des. 2014, 14, 4624–4630.

40

Guo, W. M.; Xiao, H. N.; Liu, J. X.; Liang, J. J.; Gao, P. Z.; Zeng, G. M. Effects of B4C on the microstructure and phase transformation of porous SiC ceramics. Ceram. Int. 2015, 41, 11117–11124.

41

Rangasamy, B.; Hwang, J. Y.; Choi, W. Multi layered Si–CuO quantum dots wrapped by graphene for highperformance anode material in lithium-ion battery. Carbon 2014, 77, 1065–1072.

42

Devi, V. R.; Zabidi, N. A.; Shrivastava, K. N. Interpretation of the Raman spectra of the glassy states of SixS1-x and SixSe1-x. Mater. Chem. Phys. 2013, 141, 651–656.

43

Nesheva, D.; Dzhurkov, V.; Šćepanović, M.; Bineva, I.; Manolov, E.; Kaschieva, S.; Nedev, N.; Dmitriev, S. N.; Popović, Z. V. High energy electron-beam irradiation effects in Si-SiOx structures. J. Phys. : Conf. Ser. 2016, 682, 012012.

44

Ning, J.; Wang, D.; Yan, J. D.; Han, D.; Chai, Z.; Cai, W. W.; Zhang, J. C.; Hao, Y. Combined effects of hydrogen annealing on morphological, electrical and structural properties of graphene/r-sapphire. Carbon 2014, 75, 262–270.

45

Ning, J.; Wang, D.; Zhang, C.; Wang, Z.; Tang, S.; Chen, D.; Shi, Y.; Zhang, J.; Hao, Y. Electrical and optical properties of layer-stacked graphene transparent electrodes using selfsupporting transfer method. Synth. Met. 2015, 203, 215–220.

46

Luna López, J. A.; Vázquez Valerdi, D. E.; Benítez Lara, A.; García Salgado, G.; Hernández-de la Luz, A. D.; Morales Sánchez, A.; Flores Gracia, F. J.; Dominguez, M. A. Optical and compositional properties of SiOx films deposited by HFCVD: Effect of the hydrogen flow. J. Electronic Mater. 2017, 46, 2309–2322.

47

Jangid, M. K.; Sonia, F. J.; Kali, R.; Ananthoju, B.; Mukhopadhyay, A. Insights into the effects of multi-layered graphene as buffer/interlayer for a-Si during lithiation/delithiation. Carbon 2017, 111, 602–616.

48

Zhang, Y. J.; Chen, J. H.; Fan, H. L.; Chou, K. C.; Hou, X. M. Characterization of modified SiC@SiO2 nanocables/MnO2 and their potential application as hybrid electrodes for supercapacitors. Dalton Trans. 2015, 44, 19974–19982.

49

Ahmed, M.; Khawaja, M.; Notarianni, M.; Wang, B.; Goding, D.; Gupta, B. A thin film approach for SiC-derived graphene as an on-chip electrode for supercapacitors. Nanotechnology 2015, 26, 434005.

File
12274_2017_1804_MOESM1_ESM.pdf (1.6 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 10 June 2017
Revised: 13 August 2017
Accepted: 15 August 2017
Published: 19 March 2018
Issue date: April 2018

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany 2017

Acknowledgements

Acknowledgements

The work was supported by the National Natural Science Foundation of China (Nos. 61604115 and 61334002), the Natural Science Basic Research Plan in Shaanxi Province of China (No. 2016ZDJC-09), the Key Research and Development program in Shaanxi Province (No. 2017ZDCXL-GY-11-03), the China Postdoctoral Science Foundation (No. 2015M580814), the Postdoctoral Science Research Plan in Shaanxi Province of China and the Fundamental Research Funds for the Central Universities (Nos. XJS15066 and JB161103).

Return