AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Electric field and photoelectrical effect bi-enhanced hydrogen evolution reaction

Mengyu Yan1,2,§Xunbiao Zhou1,§Xuelei Pan1Junhui Wang1Lixue Xia1Kesong Yu1Xiaobin Liao1Xu Xu1Liang He1Liqiang Mai1 ( )
State Key Laboratory of Advanced Technology for Materials Synthesis and ProcessingInternational School of Materials Science and EngineeringWuhan University of Technology430070Wuhan, China
Materials Science and Engineering DepartmentUniversity of WashingtonSeattle, Washington98195-2120USA

§Mengyu Yan and Xunbiao Zhou contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Molybdenum disulfide (MoS2) is an earth-abundant and low-cost hydrogen evolving electrocatalyst with the potential to replace traditional noble metal catalysts. The catalytic activity can be significantly enhanced after modification due to higher conductivity and enriched active sites. However, the underlying mechanism of the influence of the resistance of electrode material and contact resistance on the hydrogen evolution reaction (HER) process is unclear. Herein, we present a systematic study to understand the relationship between HER performance and electrode conductivity, which is bi-tuned through the electric field and photoelectrical effect. It was found that the onset overpotential consistently decreased with the increase of electrode conductivity. In addition, the reduction of the contact resistance resulted in a quicker electrochemical reaction process than enhancing the conductivity of the MoS2 nanosheet. An onset overpotential of 89 mV was achieved under 60 mW/cm2 sunlight illumination (0.6 sun) and a simultaneous gate voltage of 3 V. These physical strategies can also be applied to other catalysts, and offer new directions to improve HER catalytic performance of semiconductor materials.

Electronic Supplementary Material

Download File(s)
12274_2017_1802_MOESM1_ESM.pdf (1.2 MB)

References

1

Dresselhaus, M. S.; Thomas, I. L. Alternative energy technologies. Nature 2001, 414, 332-337.

2

Lewis, N. S.; Nocera, D. G. Powering the planet: Chemical challenges in solar energy utilization. Proc. Natl. Acad. Sci. USA 2006, 103, 15729-15735.

3

Xu, X. M.; Chen, Y. B.; Zhou, W.; Zhu, Z. H.; Su, C.; Liu, M. L.; Shao, Z. P. A Perovskite electrocatalyst for efficient hydrogen evolution reaction. Adv. Mater. 2016, 28, 6442-6448.

4

Zou, X. X.; Zhang, Y. Noble metal-free hydrogen evolution catalysts for water splitting. Chem. Soc. Rev. 2015, 44, 5148-5180.

5

Conway, B. E.; Jerkiewicz, G. Relation of energies and coverages of underpotential and overpotential deposited H at Pt and other metals to the "volcano curve" for cathodic H2 evolution kinetics. Electrochim. Acta 2000, 45, 4075-4083.

6

Esposito, D. V.; Hunt, S. T.; Kimmel, Y. C.; Chen, J. G. A new class of electrocatalysts for hydrogen production from water electrolysis: Metal monolayers supported on low-cost transition metal carbides. J. Am. Chem. Soc. 2012, 134, 3025-3033.

7

Greeley, J.; Jaramillo, T. F.; Bonde, J.; Chorkendorff, I.; Nørskov, J. K. Computational high-throughput screening of electrocatalytic materials for hydrogen evolution. Nat. Mater. 2006, 5, 909-913.

8

Stephens, I. E. L.; Chorkendorff, I. Minimizing the use of platinum in hydrogen-evolving electrodes. Angew. Chem., Int. Ed. 2011, 50, 1476-1477.

9

Late, D. J.; Liu, B.; Ramakrishna Matte, H. S. S.; Dravid, V. P.; Rao, C. N. R. Hysteresis in single-layer MoS2 field effect transistors. ACS Nano 2012, 6, 5635-5641.

10

Baugher, B. W. H.; Churchill, H. O. H., Yang, Y. F.; Jarillo-Herrero, P. Intrinsic electronic transport properties of high quality monolayer and bilayer MoS2. Nano Lett. 2013, 13, 4212-4216.

11

Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 2011, 6, 147-150.

12

Bao, W. Z.; Cai, X. H.; Kim, D.; Sridhara, K.; Fuhrer, M. S. High mobility ambipolar MoS2 field-effect transistors: Substrate and dielectric effects. Appl. Phy. Lett. 2013, 102, 042104.

13

Zhang, Y. J.; Ye, J. T.; Yomogida, Y.; Takenobu, T.; Iwasa, Y. Formation of a stable p-n Junction in a liquid-gated MoS2 ambipolar transistor. Nano Lett. 2013, 13, 3023−3028.

14

McDonnell, S.; Addou, R.; Buie, C.; Wallace, R. M.; Hinkle, C. L. Defect-dominated doping and contact resistance in MoS2. ACS Nano 2014, 8, 2880-2888.

15

Hinnemann, B.; Moses, P. G.; Bonde, J.; Jørgensen, P. K.; Nielsen, J. H.; Horch, S.; Chorkendorff, I.; Nørskov, J. K. Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution. J. Am. Chem. Soc. 2005, 127, 5308-5309.

16

Gao, M. R.; Liang, J. X.; Zheng, Y. R.; Xu, Y. F.; Jiang, J.; Gao, Q.; Li, J.; Yu, S. H. An efficient molybdenum disulfide/cobalt diselenide hybrid catalyst for electrochemical hydrogen generation. Nat. Commun. 2015, 6, 5982.

17

Merki, D.; Hu, X. L. Recent developments of molybdenum and tungsten sulfides as hydrogen evolution catalysts. Energ. Environ. Sci. 2011, 4, 3878-3888.

18

Voiry, D.; Yang, J.; Chhowalla, M. Recent strategies for improving the catalytic activity of 2D TMD nanosheets toward the hydrogen evolution reaction. Adv. Mater. 2016, 28, 6197-6206.

19

Wang, H. T.; Tsai, C.; Kong, D. S.; Chan, K. R.; Abild-Pedersen, F.; Nørskov, J. K.; Cui, Y. Transition-metal doped edge sites in vertically aligned MoS2 catalysts for enhanced hydrogen evolution. Nano Res. 2015, 8, 566-575.

20

Zhang, B.; Liu, J.; Wang, J. S.; Ruan, Y. J.; Ji, X.; Xu, K.; Chen, C.; Wan, H. Z.; Miao, L.; Jiang, J. J. Interface engineering: The Ni(OH)2/MoS2 heterostructure for highly efficient alkaline hydrogen evolution. Nano Energy 2017, 37, 74-80.

21

Hu, W. H.; Shang, X.; Han, G. Q.; Dong, B.; Liu, Y. R.; Li, X.; Chai, Y. M.; Liu, Y. Q.; Liu, C. G. MoSx supported graphene oxides with different degree of oxidation as efficient electrocatalysts for hydrogen evolution. Carbon 2016, 100, 236-242.

22

Acerce, M.; Voiry, D.; Chhowalla, M. Metallic 1T phase MoS2 nanosheets as supercapacitor electrode materials. Nat. Nanotechnol. 2015, 10, 313-318.

23

Geng, X. M.; Sun, W. W.; Wu, W.; Chen, B.; Al-Hilo, A.; Benamara, M.; Zhu, H. L.; Watanabe, F.; Cui, J. B.; Chen, T. P. Pure and stable metallic phase molybdenum disulfide nanosheets for hydrogen evolution reaction. Nat. Commun. 2016, 7, 10672.

24

Lin, Y. C.; Dumcenco, D. O.; Huang, Y. S.; Suenaga, K. Atomic mechanism of the semiconducting-to-metallic phase transition in single-layered MoS2. Nat. Nanotechnol. 2014, 9, 391-396.

25

Lukowski, M. A.; Daniel, A. S.; Meng, F.; Forticaux, A.; Li, L. S.; Jin, S. Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets. J. Am. Chem. Soc. 2013, 135, 10274-10277.

26

Yin, Z. Y.; Li, H.; Li, H.; Jiang, L.; Shi, Y. M.; Sun, Y. H.; Lu, G.; Zhang, Q.; Chen, X. D.; Zhang, H. Single-layer MoS2 phototransistors. ACS Nano 2012, 6, 74-80.

27

Thomas, J. G. N. Kinetics of electrolytic hydrogen evolution and the adsorption of hydrogen by metals. Trans. Faraday Soc. 1960, 57, 1603-1611.

28

Gołasa, K.; Grzeszczyk, M.; Korona, K. P.; Bożek, R.; Binder, J.; Szczytko, J.; Wysmołek, A.; Babiński, A. Optical properties of molybdenum disulfide (MoS2). Acta Phy. Polonica A 2013, 124, 849-851.

29

Windom, B. C.; Sawyer, W. G.; Hahn, D. W. A Raman spectroscopic study of MoS2 and MoO3: Applications to tribological systems. Tribol. Lett. 2011, 42, 301-310.

30

Zabinski, J. S.; Donley, M. S.; McDevittb, N. T. Mechanistic study of the synergism between Sb2O3 and MoS2 lubricant systems using Raman spectroscopy. Wear 1993, 165, 103-108.

31

Azizi, O.; Jafarian, M.; Gobal, F.; Heli, H.; Mahjani, M. G. The investigation of the kinetics and mechanism of hydrogen evolution reaction on tin. Int. J. Hydrogen Energ. 2007, 32, 1755-1761.

32

Kibsgaard, J.; Jaramillo, T. F.; Besenbacher, F. Building an appropriate active-site motif into a hydrogen-evolution catalyst with thiomolybdate [Mo3S13]2- clusters. Nat. Chem. 2014, 6, 248-253.

33

Voiry, D.; Fullon, R.; Yang, J.; de Carvalho Castroe Silva, C.; Kappera, R.; Bozkurt, I.; Kaplan, D.; Lagos, M. J.; Batson, P. E.; Gupta, G. et al. The role of electronic coupling between substrate and 2D MoS2 nanosheets in electrocatalytic production of hydrogen. Nat. Mater. 2016, 15, 1003-1009.

34

Velický, M.; Bissett, M. A.; Woods, C. R.; Toth, P. S.; Georgiou, T.; Kinloch, I. A.; Novoselov, K. S.; Dryfe, R. A.W. Photoelectrochemistry of pristine mono- and few-layer MoS2. Nano Lett. 2016, 16, 2023-2032.

35

Duan, J. J.; Chen, S.; Jaroniec, M.; Qiao, S. Z. Porous C3N4 nanolayers@N-graphene films as catalyst electrodes for highly efficient hydrogen evolution. ACS Nano 2015, 9, 931-940.

36

Yan, M. Y.; Pan, X. L.; Wang, P. Y.; Chen, F.; He, L.; Jiang, G. P.; Wang, J. H.; Liu, J. Z.; Xu, X.; Liao, X. B. et al. Field-effect tuned adsorptiondynamics of VSe2 nanosheets for enhanced hydrogen evolution reaction. Nano Lett. 2017, 17, 4109-4115.

Nano Research
Pages 3205-3212
Cite this article:
Yan M, Zhou X, Pan X, et al. Electric field and photoelectrical effect bi-enhanced hydrogen evolution reaction. Nano Research, 2018, 11(6): 3205-3212. https://doi.org/10.1007/s12274-017-1802-1
Part of a topical collection:

758

Views

21

Crossref

N/A

Web of Science

24

Scopus

1

CSCD

Altmetrics

Received: 17 July 2017
Revised: 09 August 2017
Accepted: 12 August 2017
Published: 22 May 2018
© Tsinghua University Press and Springer-Verlag GmbH Germany 2017
Return