Journal Home > Volume 11 , Issue 4

Semiconducting monolayer (ML) blue phosphorene (BlueP) shares similar stability with ML black phosphorene (BP), and it has recently been grown on an Au surface. Potential ML BlueP devices often require direct contact with metal to enable the injection of carriers. Using ab initio electronic structure calculations and quantum transport simulations, for the first time, we perform a systematic study of the interfacial properties of ML BlueP in contact with metals spanning a wide work function range in a field effect transistor (FET) configuration. ML BlueP has undergone metallization owing to strong interaction with five metals. There is a strong Fermi level pinning (FLP) in the ML BlueP FETs due to the metal-induced gap states (MIGS) with a pinning factor of 0.42. ML BlueP forms n-type Schottky contact with Sc, Ag, and Pt electrodes with electron Schottky barrier heights (SBHs) of 0.22, 0.22, and 0.80 eV, respectively, and p-type Schottky contact with Au and Pd electrodes with hole SBHs of 0.61 and 0.79 eV, respectively. The MIGS are eliminated by inserting graphene between ML BlueP and the metal electrode, accompanied by a transition from a strong FLP to a weak FLP. Our study not only provides insight into the ML BlueP–metal interfaces, but also helps in the design of ML BlueP devices.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Electrical contacts in monolayer blue phosphorene devices

Show Author's information Jingzhen Li1,§Xiaotian Sun3,§Chengyong Xu4,§Xiuying Zhang1Yuanyuan Pan1Meng Ye1Zhigang Song1Ruge Quhe5Yangyang Wang1,6Han Zhang1Ying Guo7Jinbo Yang1,2Feng Pan8( )Jing Lu1,2( )
State Key Laboratory for Mesoscopic Physics and Department of PhysicsPeking UniversityBeijing100871China
Collaborative Innovation Center of Quantum MatterBeijing100871China
College of Chemistry and Chemical Engineeringand Henan Key Laboratory of Function-Oriented Porous MaterialsLuoyang Normal UniversityLuoyang471934China
School of ScienceNanchang Institute of TechnologyNanchang330099China
State Key Laboratory of Information Photonics and Optical Communications and School of ScienceBeijing University of Posts and TelecommunicationsBeijing100876China
Nanophotonics and Optoelectronics Research CenterQian Xuesen Laboratory of Space TechnologyChina Academy of Space TechnologyBeijing100094China
School of Physics and Telecommunication EngineeringShaanxi University of TechnologyHanzhong723001China
School of Advanced MaterialsPeking UniversityShenzhen Graduate SchoolShenzhen518055China

§ Jingzhen Li, Xiaotian Sun and Chengyong Xu contributed equally to this work.

Abstract

Semiconducting monolayer (ML) blue phosphorene (BlueP) shares similar stability with ML black phosphorene (BP), and it has recently been grown on an Au surface. Potential ML BlueP devices often require direct contact with metal to enable the injection of carriers. Using ab initio electronic structure calculations and quantum transport simulations, for the first time, we perform a systematic study of the interfacial properties of ML BlueP in contact with metals spanning a wide work function range in a field effect transistor (FET) configuration. ML BlueP has undergone metallization owing to strong interaction with five metals. There is a strong Fermi level pinning (FLP) in the ML BlueP FETs due to the metal-induced gap states (MIGS) with a pinning factor of 0.42. ML BlueP forms n-type Schottky contact with Sc, Ag, and Pt electrodes with electron Schottky barrier heights (SBHs) of 0.22, 0.22, and 0.80 eV, respectively, and p-type Schottky contact with Au and Pd electrodes with hole SBHs of 0.61 and 0.79 eV, respectively. The MIGS are eliminated by inserting graphene between ML BlueP and the metal electrode, accompanied by a transition from a strong FLP to a weak FLP. Our study not only provides insight into the ML BlueP–metal interfaces, but also helps in the design of ML BlueP devices.

Keywords: self-powered, wind-driven, nanogenerator, polyaniline triboelectric, cathodic protection

References(61)

1

Fiori, G.; Bonaccorso, F.; Iannaccone, G.; Palacios, T.; Neumaier, D.; Seabaugh, A.; Banerjee, S. K.; Colombo, L. Electronics based on two-dimensional materials. Nat. Nanotechnol. 2014, 9, 768–779.

2

Kang, J. H.; Liu, W.; Sarkar, D.; Jena, D.; Banerjee, K. Computational study of metal contacts to monolayer transition-metal dichalcogenide semiconductors. Phy. Rev. X 2014, 4, 031005.

3

Schwierz, F.; Pezoldt, J.; Granzner, R. Two-dimensional materials and their prospects in transistor electronics. Nanoscale 2015, 7, 8261–8283.

4

Das, S.; Zhang, W.; Demarteau, M.; Hoffmann, A.; Dubey, M.; Roelofs, A. Tunable transport gap in phosphorene. Nano Lett. 2014, 14, 5733–5739.

5

Guan, J.; Zhu, Z.; Tománek, D. Phase coexistence and metalinsulator transition in few-layer phosphorene: A computational study. Phys. Rev. Lett. 2014, 113, 046804.

6

Xiao, J.; Long, M. Q.; Zhang, X. J.; Ouyang, J.; Xu, H.; Gao, Y. L. Theoretical predictions on the electronic structure and charge carrier mobility in 2D phosphorus sheets. Sci. Rep. 2015, 5, 9961.

7

Liu, H.; Neal, A. T.; Zhu, Z.; Luo, Z.; Xu, X. F.; Tománek, D.; Ye, P. D. Phosphorene: An unexplored 2D semiconductor with a high hole mobility. ACS Nano 2014, 8, 4033–4041.

8

Li, L. K.; Yu, Y. J.; Ye, G. J.; Ge, Q. Q.; Ou, X. D.; Wu, H.; Feng, D. L.; Chen, X. H.; Zhang, Y. B. Black phosphorus field-effect transistors. Nat. Nanotechnol. 2014, 9, 372–377.

9

Buscema, M.; Groenendijk, D. J.; Blanter, S. I.; Steele, G. A.; van der Zant, H. S. J.; Castellanos-Gomez, A. Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors. Nano Lett. 2014, 14, 3347–3352.

10

Zhu, Z.; Tománek, D. Semiconducting layered blue phosphorus: A computational study. Phys. Rev. Lett. 2014, 112, 176802.

11

Zhang, J. L.; Zhao, S. T.; Han, C.; Wang, Z. Z.; Zhong, S.; Sun, S.; Guo, R.; Zhou, X.; Gu, C. D.; Yuan, K. D. et al. Epitaxial growth of single layer blue phosphorus: A new phase of two-dimensional phosphorus. Nano Lett. 2016, 16, 4903–4908.

12

Allain, A.; Kang, J. H.; Banerjee, K.; Kis, A. Electrical contacts to two-dimensional semiconductors. Nat. Mater. 2015, 14, 1195–1205.

13

Liu, Y. Y.; Stradins, P.; Wei, S. H. Van der Waals metalsemiconductor junction: Weak Fermi level pinning enables effective tuning of Schottky barrier. Sci. Adv. 2016, 2, e1600069.

14

Quhe, R.; Peng, X. Y.; Pan, Y. Y.; Ye, M.; Wang, Y. Y.; Zhang, H.; Feng, S. Y.; Zhang, Q. X.; Shi, J. J.; Yang, J. B. et al. Can a black phosphorus Schottky barrier transistor be good enough? ACS Appl. Mater. Interfaces 2017, 9, 3959–3966.

15

Wang, J. L.; Yao, Q.; Huang, C. W.; Zou, X. M.; Liao, L.; Chen, S. S.; Fan, Z. Y.; Zhang, K.; Wu, W.; Xiao, X. H. et al. High mobility MoS2 transistor with low Schottky barrier contact by using atomic thick h-BN as a tunneling layer. Adv. Mater. 2016, 28, 8302–8308.

16

Farmanbar, M.; Brocks, G. Controlling the Schottky barrier at MoS2/metal contacts by inserting a B Nmonolayer. Phys. Rev. B 2015, 91, 161304.

17

Chuang, H. J.; Chamlagain, B.; Koehler, M.; Perera, M. M.; Yan, J. Q.; Mandrus, D.; Tománek, D.; Zhou, Z. X. Lowresistance 2D/2D ohmic contacts: A universal approach to high-performance WSe2, MoS2, and MoSe2 transistors. Nano Lett. 2016, 16, 1896–1902.

18

Kim, A. R.; Kim, Y.; Nam, J.; Chung, H. S.; Kim, D. J.; Kwon, J. D.; Park, S. W.; Park, J.; Choi, S. Y.; Lee, B. H. et al. Alloyed 2D metal-semiconductor atomic layer junctions. Nano Lett. 2016, 16, 1890–1895.

19

Liu, Y. Y.; Xiao, H.; Goddard III, W. A. Schottky-barrierfree contacts with two-dimensional semiconductors by surfaceengineered MXenes. J. Am. Chem. Soc. 2016, 138, 15853–15856.

20

Cho, S.; Kim, S.; Kim, J. H.; Zhao, J.; Seok, J.; Keum, D. H.; Baik, J.; Choe, D. H, ; Chang, K. J.; Suenaga, K. et al. Phase patterning for ohmic homojunction contact in MoTe2. Science 2015, 349, 625–628.

21

Kappera, R.; Voiry, D.; Yalcin, S. E.; Branch, B.; Gupta, G.; Mohite, A. D.; Chhowalla, M. Phase-engineered low-resistance contacts for ultrathin MoS2 transistors. Nat. Mater. 2014, 13, 1128–1134.

22

Liu, Y.; Wu, H.; Cheng, H. C.; Yang, S.; Zhu, E. B.; He, Q. Y.; Ding, M. N.; Li, D. H.; Guo, J.; Weiss, N. O. et al. Toward barrier free contact to molybdenum disulfide using graphene electrodes. Nano Lett. 2015, 15, 3030–3034.

23

Avsar, A.; Vera-Marun, I. J.; Tan, J. Y.; Watanabe, K.; Taniguchi, T.; Neto, A. H. C.; Özyilmaz, B. Air-stable transport in graphene-contacted, fully encapsulated ultrathin black phosphorus-based field-effect transistors. ACS Nano 2015, 9, 4138–4145.

24

Wang, Y. Y.; Li, J. Z.; Xiong, J. H.; Pan, Y. Y.; Ye, M.; Guo, Y.; Zhang, H.; Quhe, R.; Lu, J. Does the Dirac cone of germanene exist on metal substrates? Phys. Chem. Chem. Phys. 2016, 18, 19451–19456.

25

Pan, Y. Y.; Wang, Y. Y.; Ye, M.; Quhe, R.; Zhong, H. X.; Song, Z. G.; Peng, X. Y.; Yu, D. P.; Yang, J. B.; Shi, J. J. et al. Monolayer phosphorene–metal contacts. Chem. Mater. 2016, 28, 2100–2109.

26

Pan, Y. Y.; Li, S. B.; Ye, M.; Quhe, R.; Song, Z. G.; Wang, Y. Y.; Zheng, J. X.; Pan, F.; Guo, W. L.; Yang, J. B. et al. Interfacial properties of monolayer MoSe2–metal contacts. J. Phys. Chem. C 2016, 120, 13063–13070.

27

Li, Y. C.; Chen, X. B. Dirac fermions in blue-phosphorus. 2D Mater. 2014, 1, 031002.

28

Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

29

Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

30

Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 1993, 47, 558–561.

31

Kresse, J.; Furthmüller G. Efficiency of ab-initio total energy calculations for metals and semiconductors using a planewave basis set. Comput. Mater. Sci. 1996, 6, 15–50.

32

Monkhorst, H. J.; Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192.

33

Kresse, G.; Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Phy. Rev. B 1994, 49, 14251–14269.

34

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

35

Zhong, H. X.; Quhe, R.; Wang, Y. Y.; Ni, Z. Y.; Ye, M.; Song, Z. G.; Pan, Y. Y.; Yang, J. B.; Yang, L.; Lei, M. et al. Interfacial properties of monolayer and bilayer MoS2 contacts with metals: Beyond the energy band calculations. Sci. Rep. 2016, 6, 21786.

36

Brandbyge, M.; Mozos, J. L.; Ordejón, P.; Taylor, J.; Stokbro, K. Density-functional method for nonequilibrium electron transport. Phys. Rev. B 2002, 65, 165401.

37

Smith, D. R.; Schultz, S.; Markoš, P.; Soukoulis, C. M. Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients. Phys. Rev. B 2002, 65, 195104.

38

Soler, J. M.; Artacho, E.; Gale, J. D.; García, A.; Junquera, J.; Ordejón, P.; Sánchez-Portal, A. D. The SIESTA method for ab initio order-N materials simulation. J. Phys. : Condens. Matter 2002, 14, 2745–2779.

39
Atomistix ToolKit, version 2016; QuantumWise A/S: Copenhagen, Denmark, 2017. http://www.quantumwise.com(accessed Jun 9, 2017).
40

Çakır, D.; Peeters, F. M. Dependence of the electronic and transport properties of metal-MoSe2 interfaces on contact structures. Phys. Rev. B 2014, 89, 245403.

41

Cheng, A. H. D.; Cheng, D. T. Heritage and early history of the boundary element method. Eng. Anal. Bound. Elem. 2005, 29, 268–302.

42

Qiao, J. S.; Kong, X. H.; Hu, Z. X.; Yang, F.; Ji, W. Highmobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nat. Commun. 2014, 5, 4475.

43

Pan, Y. Y.; Dan, Y.; Wang, Y. Y.; Ye, M.; Zhang, H.; Quhe, R.; Zhang, X. Y.; Li, J. Z.; Guo, W. L.; Yang, L. et al. Schottky barriers in bilayer phosphorene transistors. ACS Appl. Mater. Interfaces 2017, 9, 12694–12705.

44

Zhang, X. Y.; Pan, Y. Y.; Ye, M.; Quhe, R.; Wang, Y. Y.; Guo, Y.; Dan, Y.; Song, Z. G.; Li, J. Z.; Yang, J. B. et al. Three-layer phosphorene–metal interfaces. Nano Res., inpress, DOI: 10.1007/s12274-017-1680-6.

45

Pan, Y. Y.; Wang, Y. Y.; Wang, L.; Zhong, H. X.; Quhe, R.; Ni, Z. Y.; Ye, M.; Mei, W. N.; Shi, J. J.; Guo, W. L. et al. Graphdiyne-metal contacts and graphdiyne transistors. Nanoscale 2015, 7, 2116–2127.

46

Wang, Y. Y.; Yang, R. X.; Quhe, R.; Zhong, H. X.; Cong, L. X.; Ye, M.; Ni, Z. Y.; Song, Z. G.; Yang, J. B.; Shi, J. J. et al. Does p-type Ohmic contact exist in WSe2-metal interfaces? Nanoscale 2016, 8, 1179–1191.

47

Guo, Y.; Pan, F.; Ye, M.; Wang, Y. Y.; Pan, Y. Y.; Zhang, X. Y.; Li, J. Z.; Zhang, H.; Lu, J. Interfacial properties of stanene–metal contacts. 2D Mater. 2016, 3, 035020.

48

Guo, Y.; Pan, F.; Ye, M.; Sun, X. T.; Wang, Y. Y.; Li, J. Z.; Zhang, X. Y.; Zhang, H.; Pan, Y. Y.; Song, Z. G. et al. Monolayer bismuthene-metal contacts: A theoretical study. ACS Appl. Mater. Inter. 2017, 9, 23128–23140.

49

Wang, Y. Y.; Ye, M.; Weng, M. Y.; Li, J. Z.; Zhang, X. Y.; Zhang, H.; Guo, Y.; Pan, Y. Y.; Xiao, L.; Liu, J. K. et al.Electrical contacts in monolayer arsenene devices. ACS Appl.Mater. Interfaces, in press, doi: 10.1021/acsami.7b08513.

50

So, C.; Zhang, H.; Wang, Y. Y.; Ye, M.; Pan, Y. Y.; Quhe, R.; Li, J. Z.; Zhang, X. Y.; Zhou, Y. S.; Lu, J. A computationalstudy of monolayer hexagonal WTe2 to metal interfaces. Phys. Status Solidi B, in press, DOI: 10.1002/pssb.201600837.

51

Zeng, J.; Cui, P.; Zhang, Z. Y. Half layer by half layer growth of a blue phosphorene monolayer on a GaN(001) substrate. Phys. Rev. Lett. 2017, 118, 046101.

52

Heine, V. Theory of surface states. Phys. Rev. 1965, 138, A1689–A1696.

53

Gong, C.; Colombo, L.; Wallace, R. M.; Cho, K. The unusual mechanism of partial Fermi level pinning at metal-MoS2 interfaces. Nano Lett. 2014, 14, 1714–1720.

54

Guo, Y. Z.; Liu, D. M.; Robertson, J. 3D behavior of schottky barriers of 2D transition-metal dichalcogenides. ACS Appl. Mater. Interfaces 2015, 7, 25709–25715.

55

Kim, C.; Moon, I.; Lee, D.; Choi, M. S.; Ahmed, F.; Nam, S.; Cho, Y.; Shin, H. J.; Park, S.; Yoo, W. J. Fermi level pinning at electrical metal contacts of monolayer molybdenum dichalcogenides. ACS Nano 2017, 11, 1588–1596.

56

Liu, H.; Neal, A. T.; Ye, P. D. Channel length scaling of MoS2 MOSFETs. ACS Nano 2012, 6, 8563–8569.

57

Das, S.; Appenzeller, J. WSe2 field effect transistors with enhanced ambipolar characteristics. Appl. Phys. Lett. 2013, 103, 103501.

58

Ling, Z. P.; Sakar, S.; Mathew, S.; Zhu, J. T.; Gopinadhan, K.; Venkatesan, T.; Ang, K. W. Black phosphorus transistors with near band edge contact schottky barrier. Sci. Rep. 2015, 5, 18000.

59

Du, Y. C.; Liu, H.; Deng, Y. X.; Ye, P. D. Device perspective for black phosphorus field-effect transistors: Contact resistance, ambipolar behavior, and scaling. ACS Nano 2014, 8, 10035–10042.

60

Lebedeva, I. V.; Lebedev, A. V.; Popov, A. M.; Knizhnik, A. A. Comparison of performance of van der Waals-corrected exchange-correlation functionals for interlayer interaction in graphene and hexagonal boron nitride. Comp. Mater. Sci. 2017, 128, 45–58.

61

Das, S.; Demarteau, M.; Roelofs, A. Ambipolar phosphorene field effect transistor. ACS Nano 2014, 8, 11730–11738.

File
12274_2017_1801_MOESM1_ESM.pdf (881.8 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 09 June 2017
Revised: 12 August 2017
Accepted: 13 August 2017
Published: 19 March 2018
Issue date: April 2018

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany 2017

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 11274016, 11474012, 11674005, 11274233, and 11664026), the National Basic Research Program of China (Nos. 2013CB932604 and 2012CB619304), Ministry of Science and Technology (National Materials Genome Project) of China (Nos. 2016YFA0301300 and 2016YFB0700600), and Foundation of Henan Educational Committee (No. 17A430026).

Return