Journal Home > Volume 11 , Issue 4

A micropump induces the flow of its surrounding fluids and is extremely promising in a variety of applications such as chemical sensing or mass transportation. However, it is still challenging to manipulate its pumping direction. In this study, we examine a binary micropump based on perovskite and poly[(2-methoxy-5-ethylhexyloxy)-1, 4-phenylenevinylene] (MEHPPV). The micropump is operational under the influence of light. Light exhibits significant versatility in controlling the pumping phenomenon of the micropump. It governs the start and stop and also regulates the velocity and directions. The direction control signifies immense opportunities for the development of micropumps with unprecedented pumping behaviors and functions (such as heartbeat-like pumping, rectification, and amplification). This makes them potentially useful in various fields. Hence, it is expected that the micropump reported in the current study could act as a key step towards the further development of more sophisticated micropumps for diverse applications.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Light-powered direction-controlled micropump

Show Author's information Mingtong LiYajun SuHui ZhangBin Dong( )
Institute of Functional Nano & Soft Materials (FUNSOM)Jiangsu Key Laboratory for Carbon-Based Functional Materials & DevicesSoochow UniversitySuzhou215123China

Abstract

A micropump induces the flow of its surrounding fluids and is extremely promising in a variety of applications such as chemical sensing or mass transportation. However, it is still challenging to manipulate its pumping direction. In this study, we examine a binary micropump based on perovskite and poly[(2-methoxy-5-ethylhexyloxy)-1, 4-phenylenevinylene] (MEHPPV). The micropump is operational under the influence of light. Light exhibits significant versatility in controlling the pumping phenomenon of the micropump. It governs the start and stop and also regulates the velocity and directions. The direction control signifies immense opportunities for the development of micropumps with unprecedented pumping behaviors and functions (such as heartbeat-like pumping, rectification, and amplification). This makes them potentially useful in various fields. Hence, it is expected that the micropump reported in the current study could act as a key step towards the further development of more sophisticated micropumps for diverse applications.

Keywords: thermal effect, micropump, light powered, density-driven, direction control

References(52)

1

Ma, X.; Wang, X.; Hahn, K.; Sánchez, S. Motion control of urea-powered biocompatible hollow microcapsules. Acs Nano 2016, 10, 3597–3605.

2

Xuan, M. J.; Wu, Z. G.; Shao, J. X.; Dai, L. R.; Si, T. Y.; He, Q. Near infrared light-powered janus mesoporous silica nanoparticle motors. J. Am. Chem. Soc. 2016, 138, 6492–6497.

3

Wu, Z. G.; Lin, X. K.; Wu, Y. J.; Si, T. Y.; Sun, J. M.; He, Q. Near-infrared light-triggered "on/off" motion of polymer multilayer rockets. ACS Nano 2014, 8, 6097–6105.

4

Li, J. X.; Liu, W. J.; Li, T. L.; Rozen, I.; Zhao, J.; Bahari, B.; Kante, B.; Wang, J. Swimming microrobot optical nanoscopy. Nano Lett. 2016, 16, 6604–6609.

5

Mayorga-Martinez, C. C.; Moo, J. G. S.; Khezri, B.; Song, P.; Fisher, A. C.; Sofer, Z.; Pumera, M. Self-propelled supercapacitors for on-demand circuit configuration based on WS2 nanoparticles micromachines. Adv. Funct. Mater. 2016, 26, 6662–6667.

6

Srivastava, S. K.; Guix, M.; Schmidt, O. G. Wastewater mediated activation of micromotors for efficient water cleaning. Nano Lett. 2016, 16, 817–821.

7

Simmchen, J.; Katuri, J.; Uspal, W. E.; Popescu, M. N.; Tasinkevych, M.; Sánchez, S. Topographical pathways guide chemical microswimmers. Nat. Commun. 2016, 7, 10598.

8

Mou, F. Z.; Chen, C. R.; Zhong, Q.; Yin, Y. X.; Ma, H. R.; Guan, J. G. Autonomous motion and temperature-controlled drug delivery of Mg/Pt-poly(N-isopropylacrylamide) janus micromotors driven by simulated body fluid and blood plasma. ACS Appl. Mater. Interfaces 2014, 6, 9897–9903.

9

Solovev, A. A.; Mei, Y. F.; Ureña, E. B.; Huang, G. S.; Schmidt, O. G. Catalytic microtubular jet engines self-propelled by accumulated gas bubbles. Small 2009, 5, 1688–1692.

10

Song, M. M.; Cheng, M. J.; Ju, G. N.; Zhang, Y. J.; Shi, F. Converting chemical energy into electricity through a functionally cooperating device with diving-surfacing cycles. Adv. Mater. 2014, 26, 7059–7063.

11

Li, J. X.; Zhang, J.; Gao, W.; Huang, G. S.; Di, Z. F.; Liu, R.; Wang, J.; Mei, Y. F. Dry-released nanotubes and nanoengines by particle-assisted rolling. Adv. Mater. 2013, 25, 3715–3721.

12

Mou, F. Z.; Chen, C. R.; Ma, H. R.; Yin, Y. X.; Wu, Q. Z.; Guan, J. G. Self-propelled micromotors driven by the magnesium-water reaction and their hemolytic properties. Angew. Chem., Int. Ed. 2013, 52, 7208–7212.

13

Xiao, M.; Guo, X. P.; Cheng, M. J.; Ju, G. N.; Zhang, Y. J.; Shi, F. Ph-responsive on-off motion of a superhydrophobic boat: Towards the design of a minirobot. Small 2014, 10, 859–865.

14

Singh, V. V.; Soto, F.; Kaufmann, K.; Wang, J. Micromotorbased energy generation. Angew. Chem., Int. Ed. 2015, 54, 6896–6899.

15

Moo, J. G. S.; Presolski, S.; Pumera, M. Photochromic spatiotemporal control of bubble-propelled micromotors by a spiropyran molecular switch. ACS Nano 2016, 10, 3543–3552.

16

Wang, H.; Moo, J. G. S.; Pumera, M. From nanomotors to micromotors: The influence of the size of an autonomous bubble-propelled device upon its motion. ACS Nano 2016, 10, 5014–5050.

17

Dong, B.; Zhou, T.; Zhang, H.; Li, C. Y. Directed selfassembly of nanoparticles for nanomotors. ACS Nano 2013, 7, 5192–5198.

18

Liu, L. M.; Liu, M.; Su, Y. J.; Dong, Y. G.; Zhou, W.; Zhang, L. N.; Zhang, H.; Dong, B.; Chi, L. F. Tadpole-like artificial micromotor. Nanoscale 2015, 7, 2276–2280.

19

Su, Y. J.; Ge, Y.; Liu, L. M.; Zhang, L. N.; Liu, M.; Sun, Y. Y.; Zhang, H.; Dong, B. Motion-based pH sensing based on the cartridge-case-like micromotor. ACS Appl. Mater. Interfaces 2016, 8, 4250–4257.

20

Ibele, M.; Mallouk, T. E.; Sen, A. Schooling behavior of light-powered autonomous micromotors in water. Angew. Chem., Int. Ed. 2009, 48, 3308–3312.

21

Paxton, W. F.; Kistler, K. C.; Olmeda, C. C.; Sen, A.; St Angelo, S. K.; Cao, Y. Y.; Mallouk, T. E.; Lammert, P. E.; Crespi, V. H. Catalytic nanomotors: Autonomous movement of striped nanorods. J. Am. Chem. Soc. 2004, 126, 13424–13431.

22

Yan, X. H.; Zhou, Q.; Yu, J. F.; Xu, T. T.; Deng, Y.; Tang, T.; Feng, Q.; Bian, L. M.; Zhang, Y.; Ferreira, A. et al. Magnetite nanostructured porous hollow helical microswimmers for targeted delivery. Adv. Funct. Mater. 2015, 25, 5333–5342.

23

Xiao, M.; Xian, Y. M.; Shi, F. Precise macroscopic supramolecular assembly by combining spontaneous locomotion driven by the marangoni effect and molecular recognition. Angew. Chem., Int. Ed. 2015, 54, 8952–8956.

24

Wang, B.; Liu, Y.; Zhang, Y. B.; Guo, Z. G.; Zhang, H.; Xin, J. H.; Zhang, L. Bioinspired superhydrophobic Fe3O4@polydopamine@Ag hybrid nanoparticles for liquid marble and oil spill. Adv. Mater. Interfaces 2015, 2, 1500234.

25

Esteban-Fernández de ávila, B.; Angell, C.; Soto, F.; Lopez-Ramirez, M. A.; Báez, D. F.; Xie, S. B.; Wang, J.; Chen, Y. Acoustically propelled nanomotors for intracellular siRNA delivery. ACS Nano 2016, 10, 4997–5005.

26

Li, T. L.; Li, J. X.; Zhang, H. T.; Chang, X. C.; Song, W. P.; Hu, Y. N.; Shao, G. B.; Sandraz, E.; Zhang, G. Y.; Li, L. Q. et al. Magnetically propelled fish-like nanoswimmers. Small 2016, 12, 6098–6105.

27

Zhang, L. N.; Zhang, H.; Liu, M.; Dong, B. Reprogrammable logic gate and logic circuit based on multistimuli-responsive raspberry-like micromotors. ACS Appl. Mater. Interfaces 2016, 8, 15654–15660.

28

Magdanz, V.; Medina-Sánchez, M.; Chen, Y.; Guix, M.; Schmidt, O. G. How to improve spermbot performance. Adv. Funct. Mater. 2015, 25, 2763–2770.

29

Ma, X.; Hortelao, A. C.; Miguel-López, A.; Sánchez, S. Bubble-free propulsion of ultrasmall tubular nanojets powered by biocatalytic reactions. J. Am. Chem. Soc. 2016, 138, 13782–13785.

30

Liu, L. M.; Dong, Y. G.; Sun, Y. Y.; Liu, M.; Su, Y. J.; Zhang, H.; Dong, B. Motion-based pH sensing using spindle-like micromotors. Nano Res. 2016, 9, 1310–1318.

31

Chen, M.; Zang, J.; Xiao, D. Q.; Zhang, C.; Liu, F. Nanopumping molecules via a carbon nanotube. Nano Res. 2009, 2, 938–944.

32

Qiu, H.; Shen, R.; Guo, W. L. Vibrating carbon nanotubes as water pumps. Nano Res. 2011, 4, 284–289.

33

Kline, T. R.; Paxton, W. F.; Wang, Y.; Velegol, D.; Mallouk, T. E.; Sen, A. Catalytic micropumps: Microscopic convective fluid flow and pattern formation. J. Am. Chem. Soc. 2005, 127, 17150–17151.

34

Farniya, A. A.; Esplandiu, M. J.; Reguera, D.; Bachtold, A. Imaging the proton concentration and mapping the spatial distribution of the electric field of catalytic micropumps. Phys. Rev. Lett. 2013, 111, 168301.

35

Patra, D.; Zhang, H.; Sengupta, S.; Sen, A. Dual stimuliresponsive, rechargeable micropumps via "host–guest" interactions. ACS Nano 2013, 7, 7674–7679.

36

Zhang, H.; Duan, W. T.; Lu, M. Q.; Zhao, X.; Shklyaev, S.; Liu, L.; Huang, T. J.; Sen, A. Self-powered glucose-responsive micropumps. ACS Nano 2014, 8, 8537–8542.

37

Zhang, H.; Yeung, K.; Robbins, J. S.; Pavlick, R. A.; Wu, M.; Liu, R.; Sen, A.; Phillips, S. T. Self-powered microscale pumps based on analyte-initiated depolymerization reactions. Angew. Chem., Int. Ed. 2012, 51, 2400–2404.

38

Yadav, V.; Zhang, H.; Pavlick, R.; Sen, A. Triggered "on/off" micropumps and colloidal photodiode. J. Am. Chem. Soc 2012, 134, 15688–15691.

39

Ortiz-Rivera, I.; Shum, H.; Agrawal, A.; Sen, A.; Balazs, A. C. Convective flow reversal in self-powered enzyme micropumps. Proc. Natl. Acad. Sci. USA 2016, 113, 2585–2590.

40

Wong, F.; Sen, A. Progress toward light-harvesting selfelectrophoretic motors: Highly efficient bimetallic nanomotors and micropumps in halogen media. Acs Nano 2016, 10, 7172–7179.

41

Hong, Y. Y.; Diaz, M.; Córdova-Figueroa, U. M.; Sen, A. Light-driven titanium-dioxide-based reversible microfireworks and micromotor/micropump systems. Adv. Funct. Mater. 2010, 20, 1568–1576.

42

Esplandiu, M. J.; Farniya, A. A.; Bachtold, A. Silicon-based chemical motors: An efficient pump for triggering and guiding fluid motion using visible light. ACS Nano 2015, 9, 11234–11240.

43

Dong, B.; Gwee, L.; Salas-de la Cruz, D.; Winey, K. I.; Elabd, Y. A. Super proton conductive high-purity nafion nanofibers. Nano Lett. 2010, 10, 3785–3790.

44

Dong, B.; Smith, M. E.; Wnek, G. E. Encapsulation of multiple biological compounds within a single electrospun fiber. Small 2009, 5, 1508–1512.

45

Dong, Y. G.; Liu, M.; Zhang, H.; Dong, B. Reconfigurable OR and XOR logic gates based on dual responsive on-offon micromotors. Nanoscale 2016, 8, 8378–8383.

46

Holz, M.; Heil, S. R.; Sacco, A. Temperature-dependent self-diffusion coefficients of water and six selected molecular liquids for calibration in accurate 1H NMR PFG measurements. Phys. Chem. Chem. Phys. 2000, 2, 4740–4742.

47

Wang, J. H.; Kennedy, J. W. Self-diffusion coefficients of sodium ion and iodide ion in aqueous sodium iodide solutions. J. Am. Chem. Soc. 1950, 72, 2080–2083.

48
Determining the Volumetric Expansion Coefficient ofLiquids. Physics Leaflet P2.1.2.1; LD Didactic GmbH: Hürth, Germany. https://www.ld-didactic.de/literatur/hb/e/p2/p2121_e.pdf (accessed Apr 1, 2017)
49

Rajamanickam, N.; Kumari, S.; Vendra, V. K.; Lavery, B. W.; Spurgeon, J.; Druffel, T.; Sunkara, M. K. Stable and durable CH3NH3PbI3 perovskite solar cells at ambient conditions. Nanotechnology 2016, 27, 235404.

50

Wu, Y. J.; Wu, Z. G.; Lin, X. K.; He, Q.; Li, J. B. Autonomous movement of controllable assembled janus capsule motors. ACS Nano 2012, 6, 10910–10916.

51

Das, S.; Shklyaev, O. E.; Altemose, A.; Shum, H.; Ortiz-Rivera, I.; Valdez, L.; Mallouk, T. E.; Balazs, A. C.; Sen, A. Harnessing catalytic pumps for directional delivery of microparticles in microchambers. Nat. Commun. 2017, 8, 14384.

52

Sengupta, S.; Patra, D.; Ortiz-Rivera, I.; Agrawal, A.; Shklyaev, S.; Dey, K. K.; Córdova-Figueroa, U. C.; Mallouk, T. E.; Sen, A. Self-powered enzyme micropumps. Nat. Chem. 2014, 6, 415–422.

Video
12274_2017_1799_MOESM2_ESM.avi
12274_2017_1799_MOESM10_ESM.avi
12274_2017_1799_MOESM8_ESM.avi
File
12274_2017_1799_MOESM13_ESM.pdf (1.5 MB)
12274_2017_1799_MOESM14_ESM.pdf (337.3 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 04 April 2017
Revised: 11 August 2017
Accepted: 13 August 2017
Published: 19 March 2018
Issue date: April 2018

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany 2017

Acknowledgements

Acknowledgements

This work is supported by the National Natural Science Foundation of China (No. 21574094), the Natural Science Foundation of Jiangsu Province (No. BK20150314) and Collaborative Innovation Center (CIC) of Suzhou Nano Science. It is also supported by the 111 Project and a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), the Fund for Excellent Creative Research Teams of Jiangsu Higher Education Institutions and the project-sponsored by SRF for ROCS, SEM.

Return