Journal Home > Volume 11 , Issue 3

Methylammonium lead halide perovskites have been reported to be promising candidates for high-performance photodetectors. However, self-powered broadband ultraviolet-visible-near infrared (UV-Vis-NIR) photodetection with high responsivity is difficult to achieve in these materials. Here, we demonstrate, for the first time, a novel trilayer hybrid photodetector made by combining an n-type Si wafer, TiO2 interlayer and perovskite film. By precisely controlling the thickness of the TiO2 layer, enhanced separation and reduced recombination of carriers at the Si–perovskite interface are obtained. As a result, perovskite film, when combined with a low-bandgap Si, extends the wavelength range of photo response to 1, 150 nm, along with improved on/off ratio, responsivity, and specific detectivity, when compared to pristine perovskite. Results obtained in this work are comparable or even better than those reported for perovskite-based UV-Vis-NIR photodetectors. In particular, the hybrid photodetectors can operate in a self-powered mode. The mechanism of enhancement has been explored and it is found that the increased separation and reduced recombination of photogenerated carriers at the junction interface leads to the improved performance.


menu
Abstract
Full text
Outline
About this article

Novel perovskite/TiO2/Si trilayer heterojunctions for high-performance self-powered ultraviolet-visible-near infrared (UV-Vis-NIR) photodetectors

Show Author's information Fengren Cao1,§Qingliang Liao2,§Kaimo Deng1Liang Chen1Liang Li1( )Yue Zhang2( )
College of PhysicsOptoelectronics and EnergyCenter for Energy Conversion Materials & Physics (CECMP)Jiangsu Key Laboratory of Thin FilmsSoochow UniversitySuzhou215006China
State Key Laboratory for Advanced Metals and MaterialsSchool of Materials Science and EngineeringUniversity of Science and Technology BeijingBeijing100083China

§ Fengren Cao and Qingliang Liao contributed equally to this work.

Abstract

Methylammonium lead halide perovskites have been reported to be promising candidates for high-performance photodetectors. However, self-powered broadband ultraviolet-visible-near infrared (UV-Vis-NIR) photodetection with high responsivity is difficult to achieve in these materials. Here, we demonstrate, for the first time, a novel trilayer hybrid photodetector made by combining an n-type Si wafer, TiO2 interlayer and perovskite film. By precisely controlling the thickness of the TiO2 layer, enhanced separation and reduced recombination of carriers at the Si–perovskite interface are obtained. As a result, perovskite film, when combined with a low-bandgap Si, extends the wavelength range of photo response to 1, 150 nm, along with improved on/off ratio, responsivity, and specific detectivity, when compared to pristine perovskite. Results obtained in this work are comparable or even better than those reported for perovskite-based UV-Vis-NIR photodetectors. In particular, the hybrid photodetectors can operate in a self-powered mode. The mechanism of enhancement has been explored and it is found that the increased separation and reduced recombination of photogenerated carriers at the junction interface leads to the improved performance.

Keywords: perovskite, atomic layer deposition, hybrid, Si, photodetector

References(30)

1

Huang, M. Q.; Wang, M. L.; Chen, C.; Ma, Z. W.; Li, X. F.; Han J. B.; Wu, Y. Q. Broadband black-phosphorus photodetectors with high responsivity. Adv. Mater. 2016, 28, 3481-3485.

2

Chen, X. L.; Li, H. L.; Qi, Z. Y.; Yang, T. F.; Yang, Y. K.; Hu, X. L.; Zhang, X. H.; Zhu, X. L.; Zhuang, X. J.; Hu W. et al. Synthesis and optoelectronic properties of quaternary GaInAsSb alloy nanosheets. Nanotechnology 2016, 27, 505602.

3

Ma, L.; Hu, W.; Zhang, Q. L.; Ren, P. Y.; Zhuang, X. J.; Zhou, H.; Xu, J. Y.; Li, H. L.; Shan, Z. P.; Wang, X. X. et al. Room-temperature near-infrared photodetectors based on single heterojunction nanowires. Nano Lett. 2014, 14, 694-698.

4

Xie, Y.; Gong, M. G.; Shastry, T. A.; Lohrman, J.; Hersam, M. C.; Ren, S. Q. Broad-spectral-response nanocarbon bulk- heterojunction excitonic photodetectors. Adv. Mater. 2013, 25, 3433-3437.

5

Fang, Y. J.; Huang, J. S. Resolving weak light of sub-picowatt per square centimeter by hybrid perovskite photodetectors enabled by noise reduction. Adv. Mater. 2015, 27, 2804-2810.

6

Ren, P. Y.; Hu, W.; Zhang, Q. L.; Zhu, X. L.; Zhuang, X. J.; Ma, L.; Fan, X. P.; Zhou, H.; Liao, L.; Duan, X. F. et al. Band-selective infrared photodetectors with complete- composition-range InAsxP1-x alloy nanowires. Adv. Mater. 2014, 26, 7444-7449.

7

Dong, R.; Fang, Y. J.; Chae, J.; Dai, J.; Xiao, Z. G.; Dong, Q. F.; Yuan, Y. B.; Centrone, A.; Zeng, X. C.; Huang, J. S. High-gain and low-driving-voltage photodetectors based on organolead triiodide perovskites. Adv. Mater. 2015, 27, 1912-1918.

8

Jeon, N. J.; Noh, J. H.; Yang, W. S.; Kim, Y. C.; Ryu, S.; Seo J.; Seok, S. I. Compositional engineering of perovskite materials for high-performance solar cells. Nature 2015, 517, 476-480.

9

Kazim, S.; Nazeeruddin, M. K.; Grätzel M.; Ahmad, S. Perovskite as light harvester: A game changer in photovoltaics. Angew. Chem., Int. Ed. 2014, 53, 2812-2824.

10

Saidaminov, M. I.; Haque, M. Z.; Savoie, M.; Abdelhady, A. L.; Cho, N.; Dursun, I.; Buttner, U.; Alarousu, E.; Wu, T.; Bakr, O. M. Perovskite photodetectors operating in both narrowband and broadband regimes. Adv. Mater. 2016, 28, 8144-8149.

11

Saidaminov, M. I.; Adinolfi, V.; Comin, R.; Abdelhady, A. L.; Peng, W.; Dursun, I.; Yuan, M. J.; Hoogland, S.; Sargent E. H.; Bakr, O. M. Planar-integrated single-crystalline perovskite photodetectors. Nat. Commun. 2015, 6, 8724.

12

Lu, H.; Tian, W.; Cao, F. R.; Ma, Y. L.; Gu, B. K.; Li, L. A self-powered and stable all-perovskite photodetector-solar cell nanosystem. Adv. Funct. Mater. 2016, 26, 1296-1302.

13

Wang, F.; Mei, J. J.; Wang, Y. P.; Zhang, L. G.; Zhao H. F.; Zhao, D. X. Fast photoconductive responses in organometal halide perovskite photodetectors. ACS Appl. Mater. Interfaces 2016, 8, 2840-2846.

14

Zhou, J. C.; Chu, Y. L.; Huang, J. Photodetectors based on two-dimensional layer-structured hybrid lead iodide perovskite semiconductors. ACS Appl. Mater. Interfaces 2016, 8, 25660-25666.

15

Cao, F. R.; Tian, W.; Gu, B. K.; Ma, Y. L.; Lu H.; Li, L. High- performance UV-vis photodetectors based on electrospun ZnO nanofiber-solution processed perovskite hybrid structures. Nano Res. 2017, 7, 2244-2256.

16

Deng, W.; Huang, L. M.; Xu, X. Z.; Zhang, X. J.; Jin, X. C.; Lee, S. T.; Jie, J. S. Ultrahigh-responsivity photodetectors from perovskite nanowire arrays for sequentially tunable spectral measurement. Nano Lett. 2017, 17, 2482-2489.

17

Aharon, S.; Etgar, L. Two dimensional organometal halide perovskite nanorods with tunable optical properties. Nano Lett. 2016, 16, 3230-3235.

18

Liu, C.; Wang, K.; Du, P. C.; Wang, E. M.; Gong X.; Heeger, A. J. Ultrasensitive solution-processed broad-band photodetectors using CH3NH3PbI3 perovskite hybrids and PbS quantum dots as light harvesters. Nanoscale 2015, 7, 16460-16469.

19

Chen, S.; Teng, C. J.; Zhang, M.; Li, Y. R.; Xie D.; Shi, G. Q. A flexible UV-Vis-NIR photodetector based on a perovskite/conjugated-polymer composite. Adv. Mater. 2016, 28, 5969-5974.

20

Zhang, X. H.; Yang, S. Z.; Zhou, H.; Liang, J. W.; Liu, H. W.; Xia, H.; Zhu, X. L.; Jiang, Y.; Zhang, Q. L.; Hu, W. et al. Perovskite-erbium silicate nanosheet hybrid waveguide photodetectors at the near-infrared telecommunication band. Adv. Mater. 2017, 29, 1604431.

21

Yao, J. D.; Shao, J. M.; Wang, Y. X.; Zhao Z. R.; Yang, G. W. Ultra-broadband and high response of the Bi2Te3-Si heterojunction and its application as a photodetector at room temperature in harsh working environments. Nanoscale 2015, 7, 12535-12541.

22

Wang, L.; Jie, J. S.; Shao, Z. B.; Zhang, Q.; Zhang, X. H.; Wang, Y. M.; Sun Z.; Lee, S. T. MoS2/Si heterojunction with vertically standing layered structure for ultrafast, high- detectivity, self-driven visible-near infrared photodetectors. Adv. Funct. Mater. 2015, 25, 2910-2919.

23

Zhao, C. X.; Liang, Z. M.; Su, M. Z.; Liu, P. Y.; Mai, W. J.; Xie, W. G. Self-powered, high-speed and visible-near infrared response of MoO3-x/n-Si heterojunction photodetector with enhanced performance by interfacial engineering. ACS Appl. Mater. Interfaces 2015, 7, 25981-25990.

24

Hu, P. A.; Wang, L. F.; Yoon, M.; Zhang, J.; Feng, W.; Wang, X. N.; Wen, Z. Z.; Idrobo, J. C.; Miyamoto, Y.; Geohegan D. B. et al. Highly responsive ultrathin GaSnanosheetphotodetectors on rigid and flexible substrates. Nano Lett. 2013, 13, 1649-1654.

25

Zhou, X.; Zhang, Q.; Gan, L.; Li, X.; Li, H. Q.; Zhang, Y.; Golberg, D.; Zhai, T. Y. High-performance solar-blind deep ultraviolet photodetector based on individual single-crystalline Zn2GeO4 nanowire. Adv. Funct. Mater. 2016, 26, 704-712.

26

Savenije, T. J.; Ponseca, C. S. Jr.; Kunneman, L.; Abdellah, M.; Zheng, K. B.; Tian, Y. X.; Zhu, Q. S.; Canton, S. E.; Scheblykin, I. G.; Pullerits, T. et al. Thermally activated exciton dissociation and recombination control the carrier dynamics in organometal halide perovskite. J. Phys. Chem. Lett. 2014, 5, 2189-2194.

27

Ma, C.; Shi, Y. M.; Hu, W. J.; Chiu, M. H.; Liu, Z. X.; Bera, A.; Li, F.; Wang, H.; Li, L. J.; Wu, T. Heterostructured WS2/CH3NH3PbI3 photoconductors with suppressed dark current and enhanced photodetectivity. Adv. Mater. 2016, 28, 3683-3689.

28

Dymshits, A.; Henning, A.; Segev, G.; Rosenwaks, Y.; Etgar, L. The electronic structure of metal oxide/organo metal halide perovskite junctions in perovskite based solar cells. Sci. Rep. 2015, 5, 8704.

29

Song, D. Y.; Guo, B. Z. Electrical properties and carrier transport mechanisms of n-ZnO/SiOx/n-Si isotype heterojunctions with native or thermal oxide interlayers. J. Phys. DAppl. Phys. 2009, 42, 025103.

30

Hwang, Y. J.; Boukai A.; Yang, P. D. High density n-Si/n-TiO2 core/shell nanowire arrays with enhanced photoactivity. Nano Lett. 2009, 9, 410-415.

Publication history
Copyright
Acknowledgements

Publication history

Received: 24 June 2017
Revised: 28 July 2017
Accepted: 03 August 2017
Published: 02 February 2018
Issue date: March 2018

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany 2017

Acknowledgements

Acknowledgements

This research was supported by the National Natural Science Foundation of China (Nos. 51672026, 51422206, 51372020, and 51372159), the National Key Research and Development Program of China (No. 2016YFA0202701), the Major National Scientific Research Projects (No. 2013CB932602), 1000 Youth Talents Plan, 333 High-level Talents Cultivation Project of Jiangsu Province, Six Talents Peak Project of Jiangsu Province, Distinguished Young Scholars Foundation by Jiangsu Science and Technology Committee (No. BK20140009), and Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Return