Journal Home > Volume 11 , Issue 3

Since its discovery, the direct imaging and determination of the crystal structure of few-layer graphdiyne has proven difficult because it is too delicate under irradiation by an electron beam. In this work, the crystal structure of a six-layered graphdiyne nanosheet was directly observed by low-voltage transmission electron microscopy (TEM) using low current density. The combined use of high-resolution TEM (HRTEM) simulation, electron energy-loss spectroscopy, and electron diffraction revealed that the as-synthesized nanosheet was crystalline graphdiyne with a thickness of 2.19 nm (corresponding to a thickness of six layers) and showed ABC stacking. Thus, this work provides direct evidence for the existence and crystal structure of few-layer graphdiyne, which is a new type of two-dimensional carbon material complementary to graphene.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Direct imaging and determination of the crystal structure of six-layered graphdiyne

Show Author's information Chao Li1,§Xiuli Lu1,§Yingying Han1Shangfeng Tang1Yi Ding1Ruirui Liu1Haihong Bao1Yuliang Li2Jun Luo1( )Tongbu Lu1( )
Center for Electron MicroscopyTUT-FEI Joint LaboratoryTianjin Key Laboratory of Advanced Porous Functional MaterialsInstitute for New Energy Materials & Low-Carbon TechnologiesSchool of Materials Science and EngineeringTianjin University of TechnologyTianjin300384China
Key Laboratory of Organic SolidsInstitute of ChemistryChinese Academy of SciencesBeijing100190China

§ Chao Li and Xiuli Lu contributed equally to this work.

Abstract

Since its discovery, the direct imaging and determination of the crystal structure of few-layer graphdiyne has proven difficult because it is too delicate under irradiation by an electron beam. In this work, the crystal structure of a six-layered graphdiyne nanosheet was directly observed by low-voltage transmission electron microscopy (TEM) using low current density. The combined use of high-resolution TEM (HRTEM) simulation, electron energy-loss spectroscopy, and electron diffraction revealed that the as-synthesized nanosheet was crystalline graphdiyne with a thickness of 2.19 nm (corresponding to a thickness of six layers) and showed ABC stacking. Thus, this work provides direct evidence for the existence and crystal structure of few-layer graphdiyne, which is a new type of two-dimensional carbon material complementary to graphene.

Keywords: crystal structure, few-layer graphdiyne, low-voltage transmission electron microscopy

References(32)

1

Baughman, R. H.; Zakhidov, A. A.; de Heer, W. A. Carbon nanotubes-the route toward applications. Science 2002, 297, 787-792.

2

Baughman, R. H.; Eckhardt, H.; Kertesz, M. Structure-property predictions for new planar forms of carbon: Layered phases containing sp2 and sp atoms. J. Chem. Phys. 1987, 87, 6687-6699.

3

Coluci, V. R.; Galvão, D. S.; Baughman, R. H. Theoretical investigation of electromechanical effects for graphyne carbon nanotubes. J. Chem. Phys. 2004, 121, 3228-3237.

4

Li, Y. J.; Xu, L.; Liu, H. B.; Li, Y. L. Graphdiyne and graphyne: From theoretical predictions to practical construction. Chem. Soc. Rev. 2014, 43, 2572-2586.

5

Chen, J. M.; Xi, J. Y.; Wang, D; Shuai, Z. G. Carrier mobility in graphyne should be even larger than that in graphene: A theoretical prediction. J. Phys. Chem. Lett. 2013, 4, 1443-1448.

6

Jin, Z. W.; Zhou, Q.; Chen, Y. H.; Mao, P.; Li, H.; Liu, H. B.; Wang, J. Z.; Li, Y. L. Graphdiyne: ZnO nanocomposites for high-performance UV photodetectors. Adv. Mater. 2016, 28, 3697-3702.

7

Xiao, J. Y.; Shi, J. J.; Liu, H. B.; Xu, Y. Z.; Lv, S. T.; Luo, Y. H.; Li, D. M.; Meng, Q. B.; Li, Y. L. Efficient CH3NH3PbI3 perovskite solar cells based on graphdiyne (GD)-modified P3HT hole-transporting material. Adv. Energy Mater. 2015, 5, 1401493.

8

Li, G. X.; Li, Y. L.; Qian, X. M.; Liu, H. B.; Lin, H. W.; Chen, N.; Li, Y. J. Construction of tubular molecule aggregations of graphdiyne for highly efficient field emission. J. Phys. Chem. C 2011, 115, 2611-2615.

9

Huang, C. S.; Zhang, S. L.; Liu, H. B.; Li, Y. J.; Cui, G. L.; Li, Y. L. Graphdiyne for high capacity and long-life lithium storage. Nano Energy 2015, 11, 481-489.

10

Zhang, S. L.; Liu, H. B.; Huang, C. S.; Cui, G. L.; Li, Y. L. Bulk graphdiyne powder applied for highly efficient lithium storage. Chem. Commun. 2015, 51, 1834-1837.

11

Yang, N. L.; Liu, Y. Y.; Wen, H.; Tang, Z. Y.; Zhao, H. J.; Li, Y. L.; Wang, D. Photocatalytic properties of graphdiyne and graphene modified TiO2: From theory to experiment. ACS Nano 2013, 7, 1504-1512.

12

Zhang, X.; Zhu, M. S.; Chen, P. L.; Li, Y. J.; Liu, H. B.; Li, Y. L.; Liu, M. H. Pristine graphdiyne-hybridized photocatalysts using graphene oxide as a dual-functional coupling reagent. Phys. Chem. Chem. Phys. 2015, 17, 1217-1225.

13

Li, J.; Gao, X.; Liu, B.; Feng, Q. L.; Li, X. B.; Huang, M. Y.; Liu, Z. F.; Zhang, J.; Tung, C. H.; Wu, L. Z. Graphdiyne: A metal-free material as hole transfer layer to fabricate quantum dot-sensitized photocathodes for hydrogen production. J. Am. Chem. Soc. 2016, 138, 3954-3957.

14

Li, G. X.; Li, Y. L.; Liu, H. B.; Guo, Y. B.; Li, Y. J.; Zhu, D. B. Architecture of graphdiyne nanoscale films. Chem. Commun. 2010, 46, 3256-3258.

15

Qian, X. M.; Ning, Z. Y.; Li, Y. L.; Liu, H. B.; Ouyang, C. B.; Chen, Q.; Li, Y. J. Construction of graphdiyne nanowires with high-conductivity and mobility. Dalton Trans. 2012, 41, 730-733.

16

Zhou, J. Y.; Gao, X.; Liu, R.; Xie, Z. Q.; Yang, J.; Zhang, S. Q.; Zhang, G. M.; Liu, H. B.; Li, Y. L.; Zhang, J. et al. Synthesis of graphdiyne nanowalls using acetylenic coupling reaction. J. Am. Chem. Soc. 2015, 137, 7596-7599.

17

Matsuoka, R.; Sakamoto, R.; Hoshiko, K.; Sasaki, S.; Masunaga, H.; Nagashio, K.; Nishihara, H. Crystalline graphdiyne nanosheets produced at a gas/liquid or liquid/liquid interface. J. Am. Chem. Soc. 2017, 139, 3145-3152.

18

Li, J. Q.; Xie, Z. Q.; Xiong, Y.; Li, Z. Z.; Huang, Q. X.; Zhang, S. Q.; Zhou, J. Y.; Liu, R.; Gao, X.; Chen, C. Q. et al. Architecture of β-graphdiyne-containing thin film using modified glaser-hay coupling reaction for enhanced photocatalytic property of TiO2. Adv. Mater. 2017, 29, 1700421.

19

Ivanovskii, A. L. Graphynes and graphdyines. Prog. Solid State Chem. 2013, 41, 1-19.

20

Xia, J.; Wang, X. L.; Tay, B. K.; Chen, S. S.; Liu, Z.; Yan, J. X.; Shen, Z. X. Valley polarization in stacked MoS2 induced by circularly polarized light. Nano Res. 2017, 10, 1618-1626.

21

Lu, X.; Luo, X.; Zhang, J.; Quek, S. Y.; Xiong, Q. H. Lattice vibrations and Raman scattering in two-dimensional layered materials beyond graphene. Nano Res. 2016, 9, 3559-3597.

22

Sánchez-Royo, J. F.; Muñoz-Matutano, G.; Brotons-Gisbert, M.; Martínez-Pastor, J. P.; Segura, A.; Cantarero, A.; Mata, R.; Canet-Ferrer, J.; Tobias, G.; Canadell, E. et al. Electronic structure, optical properties, and lattice dynamics in atomically thin indium selenide flakes. Nano Res. 2014, 7, 1556-1568.

23

Zheng, Q. Y.; Luo, G. F.; Liu, Q. H.; Quhe, R. G.; Zheng, J. X.; Tang, K. C.; Gao, Z. X.; Nagase, S.; Lu, J. Structural and electronic properties of bilayer and trilayer graphdiyne. Nanoscale 2012, 4, 3990-3996.

24

Srinivasu, K.; Ghosh, S. K. Graphyne and graphdiyne: Promising materials for nanoelectronics and energy storage applications. J. Phys. Chem. C 2012, 116, 5951-5956.

25

Long, M. Q.; Tang, L.; Wang, D.; Li, Y. L.; Shuai Z. G. Electronic structure and carrier mobility in graphdiyne sheet and nanoribbons: Theoretical predictions. ACS Nano 2011, 5, 2593-2600.

26

Narita, N.; Nagai, S.; Suzuki, S.; Nakao, K. Electronic structure of three-dimensional graphyne. Phys. Rev. B 2000, 62, 11146-11151.

27

Egerton, R. F. Electron Energy-Loss Spectroscopy in the Electron Microscope; Springer: New York, USA, 1995.

DOI
28

Li, C.; Yao, Y.; Shen, X.; Wang, Y. G.; Li, J. J.; Gu, C. Z.; Yu, R. C.; Liu, Q.; Liu, M. Dynamic observation of oxygen vacancies in hafnia layer by in situ transmission electron microscopy. Nano Res. 2015, 8, 3571-3579.

29

Li, C.; Gao, B.; Yao, Y.; Guan, X. X.; Shen, X.; Wang, Y. G.; Huang, P.; Liu, L. F.; Liu, X. Y.; Li, J. J. et al. Direct observations of nanofilament evolution in switching processes in HfO2-based resistive random access memory by in situ TEM studies. Adv. Mater. 2017, 29, 1602976.

30

Gao, X.; Li, J.; Du, R.; Zhou, J. Y.; Huang, M. Y.; Liu, R.; Li, J.; Xie, Z. Q.; Wu, L. Z.; Liu, Z. F. et al. Direct synthesis of graphdiyne nanowalls on arbitrary substrates and its application for photoelectrochemical water splitting cell. Adv. Mater. 2017, 29, 1605308.

31

Chang, L. Y.; Kirkland, A. I. Comparisons of linear and nonlinear image restoration. Microsc. Microanal. 2006, 12, 469-475.

32

Marks, L. D. Wiener-filter enhancement of noisy HREM images. Ultramicroscopy 1996, 62, 43-52.

File
12274_2017_1789_MOESM1_ESM.pdf (1.6 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 27 May 2017
Revised: 24 July 2017
Accepted: 03 August 2017
Published: 02 February 2018
Issue date: March 2018

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany 2017

Acknowledgements

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 11604241, 21790052 and 21331007), the National Program for Thousand Young Talents of China, the Postdoctoral Science Foundation of China (No. 2015M580209), the Tianjin Municipal Education Commission, the Tianjin Municipal Science and Technology Commission (No. 15JCYBJC52600), and the Fundamental Research Fund of Tianjin University of Technology.

Return