Journal Home > Volume 11 , Issue 3

The development of highly efficient and inexpensive catalysts for oxygen evolving reactions (OERs) is extremely urgent for promoting the overall efficiency of water splitting. Herein we report the fabrication of a series of amorphous NiFeB nanoparticles with varying atomic ratios of Fe to (Ni + Fe) (χFe) by a facile chemical-reduction method. The amorphous NiFeB (χFe = 0.20) nanoparticles, combining the merits of in situ formation of borate-enriched NiFeOOH catalytic surface layers, intrinsic amorphous nanostructures, and an optimized degree of Fe doping, displayed highly active electrocatalytic performance towards the OER in a broad range of pH values (from alkaline to neutral conditions). The catalyst exhibited a relatively low overpotential of 216 mV with a Tafel slope of 40 mV/dec on Ni foam and 251 mV with a Tafel slope of 43 mV/dec on glassy carbon at 10 mA/cm2 in a 1 M KOH solution, demonstrating much greater OER efficiency than that of commercial RuO2. Long-term stability testing of the OER performance of NiFeB (χFe = 0.20) by chronoamperometry (overpotential (η) = 320 mV) over 200 h revealed no evidence of degradation. Facile, scalable synthesis and highly active water oxidation make the NiFeB nanoparticles very attractive for OER electrocatalysis.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Amorphous NiFeB nanoparticles realizing highly active and stable oxygen evolving reaction for water splitting

Show Author's information Guang LiuDongying HeRui YaoYong ZhaoJinping Li( )
Shanxi Key Laboratory of Gas Energy Efficient and Clean UtilizationResearch Institute of Special ChemicalsTaiyuan University of TechnologyTaiyuan030024China

Abstract

The development of highly efficient and inexpensive catalysts for oxygen evolving reactions (OERs) is extremely urgent for promoting the overall efficiency of water splitting. Herein we report the fabrication of a series of amorphous NiFeB nanoparticles with varying atomic ratios of Fe to (Ni + Fe) (χFe) by a facile chemical-reduction method. The amorphous NiFeB (χFe = 0.20) nanoparticles, combining the merits of in situ formation of borate-enriched NiFeOOH catalytic surface layers, intrinsic amorphous nanostructures, and an optimized degree of Fe doping, displayed highly active electrocatalytic performance towards the OER in a broad range of pH values (from alkaline to neutral conditions). The catalyst exhibited a relatively low overpotential of 216 mV with a Tafel slope of 40 mV/dec on Ni foam and 251 mV with a Tafel slope of 43 mV/dec on glassy carbon at 10 mA/cm2 in a 1 M KOH solution, demonstrating much greater OER efficiency than that of commercial RuO2. Long-term stability testing of the OER performance of NiFeB (χFe = 0.20) by chronoamperometry (overpotential (η) = 320 mV) over 200 h revealed no evidence of degradation. Facile, scalable synthesis and highly active water oxidation make the NiFeB nanoparticles very attractive for OER electrocatalysis.

Keywords: electrocatalyst, water splitting, amorphous, NiFeB, oxygen evolving reaction

References(56)

1

Cook, T. R.; Dogutan, D. K.; Reece, S. Y.; Surendranath, Y.; Teets, T. S.; Nocera, D. G. Solar energy supply and storage for the legacy and nonlegacy worlds. Chem. Rev. 2010, 110, 6474-6502.

2

Zou, X. X.; Zhang, Y. Noble metal-free hydrogen evolution catalysts for water splitting. Chem. Soc. Rev. 2015, 44, 5148-5180.

3

Xu, K.; Chen, P. Z.; Li, X. L.; Tong, Y.; Ding, H.; Wu, X. J.; Chu, W. S.; Peng, Z. M.; Wu, C. Z.; Xie, Y. Metallic nickel nitride nanosheets realizing enhanced electrochemical water oxidation. J. Am. Chem. Soc. 2015, 137, 4119-4125.

4

Suntivich, J.; May, K. J.; Gasteiger, H. A.; Goodenough, J. B.; Shao-Horn, Y. A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science 2011, 334, 1383-1385.

5

Zhang, B.; Zheng, X. L.; Voznyy, O.; Comin, R.; Bajdich, M.; García-Melchor, M.; Han, L. L.; Xu, J. X.; Liu, M.; Zheng, L. R. et al. Homogeneously dispersed multimetal oxygen-evolving catalysts. Science 2016, 352, 333-337.

6

Jung, S.; McCrory, C. C. L.; Ferrer, I. M.; Peters, J. C.; Jaramillo, T. F. Benchmarking nanoparticulate metal oxide electrocatalysts for the alkaline water oxidation reaction. J. Mater. Chem. A 2016, 4, 3068-3076.

7

Du, S. C.; Ren, Z. Y.; Zhang, J.; Wu, J.; Xi, W.; Zhu, J. Q.; Fu, H. G. Co3O4 nanocrystal ink printed on carbon fiber paper as a large-area electrode for electrochemical water splitting. Chem. Commun. 2015, 51, 8066-8069.

8

Risch, M.; Klingan, K.; Heidkamp, J.; Ehrenberg, D.; Chernev, P.; Zaharieva, I.; Dau, H. Nickel-oxido structure of a water-oxidizing catalyst film. Chem. Commun. 2011, 47, 11912-11914.

9

Zhao, Y. F.; Jia, X. D.; Chen, G. B.; Shang, L.; Waterhouse, G. I. N.; Wu, L. -Z.; Tung, C. -H.; O'Hare, D.; Zhang, T. Ultrafine NiO nanosheets stabilized by TiO2 from monolayer NiTi-LDH precursors: An active water oxidation electrocatalyst. J. Am. Chem. Soc. 2016, 138, 6517-6524.

10

Jiao, F.; Frei, H. Nanostructured cobalt and manganese oxide clusters as efficient water oxidation catalysts. Energy Environ. Sci. 2010, 3, 1018-1027.

11

Gong, M.; Dai, H. J. A mini review of nife-based materials as highly active oxygen evolution reaction electrocatalysts. Nano Res. 2015, 8, 23-39.

12

Wang, L. X.; Geng, J.; Wang, W. H.; Yuan, C.; Kuai, L.; Geng, B. Y. Facile synthesis of Fe/Ni bimetallic oxide solid-solution nanoparticles with superior electrocatalytic activity for oxygen evolution reaction. Nano Res. 2015, 8, 3815-3822.

13

Trotochaud, L.; Ranney, J. K.; Williams, K. N.; Boettcher, S. W. Solution-cast metal oxide thin film electrocatalysts for oxygen evolution. J. Am. Chem. Soc. 2012, 134, 17253-17261.

14

Liu, G.; Gao, X. S.; Wang, K. F.; He, D. Y.; Li, J. P. Uniformly mesoporous NiO/NiFe2O4 biphasic nanorods as efficient oxygen evolving catalyst for water splitting. Int. J. Hydrogen Energy 2016, 41, 17976-17986.

15

Jiang, J.; Zhang, C. H.; Ai, L. H. Hierarchical iron nickel oxide architectures derived from metal-organic frameworks as efficient electrocatalysts for oxygen evolution reaction. Electrochim. Acta 2016, 208, 17-24.

16

Zhang, K.; Wang, W. H.; Kuai, L.; Geng, B. Y. A facile and efficient strategy to gram-scale preparation of composition-controllable Ni-Fe LDHs nanosheets for superior OER catalysis. Electrochim. Acta 2017, 225, 303-309.

17

Liu, G.; Gao, X. S.; Wang, K. F.; He, D. Y.; Li, J. P. Mesoporous nickel-iron binary oxide nanorods for efficient electrocatalytic water oxidation. Nano Res. 2017, 10, 2096-2105.

18

Li, C.; Han, X. P.; Cheng, F. Y.; Hu, Y. X.; Chen, C. C.; Chen, J. Phase and composition controllable synthesis of cobalt manganese spinel nanoparticles towards efficient oxygen electrocatalysis. Nat. Commun. 2015, 6, 7345.

19

Su, Y. -Z.; Xu, Q. -Z.; Chen, G. -F.; Cheng, H.; Li, N.; Liu, Z. -Q. One dimensionally spinel NiCo2O4 nanowire arrays: Facile synthesis, water oxidation, and magnetic properties. Electrochim. Acta 2015, 174, 1216-1224.

20

Li, L. L.; Tian, T.; Jiang, J.; Ai, L. H. Hierarchically porous Co3O4 architectures with honeycomb-like structures for efficient oxygen generation from electrochemical water splitting. J. Power Sources 2015, 294, 103-111.

21

Liu, G.; Wang, K. F.; Gao, X. S.; He, D. Y.; Li, J. P. Fabrication of mesoporous NiFe2O4 nanorods as efficient oxygen evolution catalyst for water splitting. Electrochim. Acta 2016, 211, 871-878.

22

Surendranath, Y.; Dincă, M.; Nocera, D. G. Electrolyte-dependent electrosynthesis and activity of cobalt-based water oxidation catalysts. J. Am. Chem. Soc. 2009, 131, 2615-2620.

23

Kanan, M. W.; Surendranath, Y.; Nocera, D. G. Cobalt-phosphate oxygen-evolving compound. Chem. Soc. Rev. 2009, 38, 109-114.

24

Fominykh, K.; Chernev, P.; Zaharieva, I.; Sicklinger, J.; Stefanic, G.; Doblinger, M.; Müller, A.; Pokharel, A.; Bocklein, S.; Scheu, C. et al. Iron-doped nickel oxide nanocrystals as highly efficient electrocatalysts for alkaline water splitting. ACS Nano 2015, 9, 5180-5188.

25

Nurlaela, E.; Shinagawa, T.; Qureshi, M.; Dhawale, D. S.; Takanabe, K. Temperature dependence of electrocatalytic and photocatalytic oxygen evolution reaction rates using nife oxide. ACS Catal. 2016, 6, 1713-1722.

26

Wang, J. Y.; Ji, L. L.; Chen, Z. F. In situ rapid formation of a nickel-iron-based electrocatalyst for water oxidation. ACS Catal. 2016, 6, 6987-6992.

27

Zuo, Z. -J.; Wang, L.; Han, P. -D.; Huang, W. Insights into the reaction mechanisms of methanol decomposition, methanol oxidation and steam reforming of methanol on Cu(111): A density functional theory study. Int. J. Hydrogen Energy 2014, 39, 1664-1679.

28

Xu, K.; Ding, H.; Lv, H. F.; Chen, P. Z.; Lu, X. L.; Cheng, H.; Zhou, T. P.; Liu, S.; Wu, X. J.; Wu, C. Z. et al. Dual electrical-behavior regulation on electrocatalysts realizing enhanced electrochemical water oxidation. Adv. Mater. 2016, 28, 3326-3332.

29

Jia, X. D.; Zhao, Y. F.; Chen, G. B.; Shang, L.; Shi, R.; Kang, X. F.; Waterhouse, G. I. N.; Wu, L. Z.; Tung, C. H.; Zhang, T. R. Ni3FeN nanoparticles derived from ultrathin NiFe-layered double hydroxide nanosheets: An efficient overall water splitting electrocatalyst. Adv. Energy Mater. 2016, 6, 1502585.

30

Stern, L. -A.; Feng, L. G.; Song, F.; Hu, X. L. Ni2P as a Janus catalyst for water splitting: The oxygen evolution activity of Ni2P nanoparticles. Energy Environ. Sci. 2015, 8, 2347-2351.

31

Zhou, W. J.; Wu, X. -J.; Cao, X. H.; Huang, X.; Tan, C. L.; Tian, J.; Liu, H.; Wang, J. Y.; Zhang, H. Ni3S2 nanorods/Ni foam composite electrode with low overpotential for electrocatalytic oxygen evolution. Energy Environ. Sci. 2013, 6, 2921-2924.

32

Gao, M. R.; Cao, X.; Gao, Q.; Xu, Y. F.; Zheng, Y. R.; Jiang, J.; Yu, S. H. Nitrogen-doped graphene supported CoSe2 nanobelt composite catalyst for efficient water oxidation. ACS Nano 2014, 8, 3970-3978.

33

Liao, M.; Zeng, G. F.; Luo, T. T.; Jin, Z. Y.; Wang, Y. J.; Kou, X. M.; Xiao, D. Three-dimensional coral-like cobalt selenide as an advanced electrocatalyst for highly efficient oxygen evolution reaction. Electrochim. Acta 2016, 194, 59-66.

34

Xu, K.; Cheng, H.; Liu, L. Q.; Lv, H. F.; Wu, X. J.; Wu, C. Z.; Xie, Y. Promoting active species generation by electrochemical activation in alkaline media for efficient electrocatalytic oxygen evolution in neutral media. Nano Lett. 2017, 17, 578-583.

35

Gupta, S.; Patel, N.; Fernandes, R.; Hanchate, S.; Miotello, A.; Kothari, D. Co-Mo-B nanoparticles as a non-precious and efficient bifunctional electrocatalyst for hydrogen and oxygen evolution. Electrochim. Acta 2017, 232, 64-71.

36

Duan, J. J.; Chen, S.; Vasileff, A.; Qiao, S. Z. Anion and cation modulation in metal compounds for bifunctional overall water splitting. ACS Nano 2016, 10, 8738-8745.

37

Zeng, M.; Wang, H.; Zhao, C.; Wei, J. K.; Wang, W. L.; Bai, X. D. 3D graphene foam-supported cobalt phosphate and borate electrocatalysts for high-efficiency water oxidation. Sci. Bull. 2015, 60, 1426-1433.

38

Guo, S. J.; Yang, Y. M.; Liu, N. Y.; Qiao, S.; Huang, H.; Liu, Y.; Kang, Z. H. One-step synthesis of cobalt, nitrogen-codoped carbon as nonprecious bifunctional electrocatalyst for oxygen reduction and evolution reactions. Sci. Bull. 2016, 61, 68-77.

39

Bediako, D. K.; Surendranath, Y.; Nocera, D. G. Mechanistic studies of the oxygen evolution reaction mediated by a nickel-borate thin film electrocatalyst. J. Am. Chem. Soc. 2013, 135, 3662-3674.

40

Dincă, M.; Surendranath, Y.; Nocera, D. G. Nickel-borate oxygen-evolving catalyst that functions under benign conditions. Proc. Natl. Acad. Sci. USA 2010, 107, 10337-10341.

41

Masa, J.; Weide, P.; Peeters, D.; Sinev, I.; Xia, W.; Sun, Z. Y.; Somsen, C.; Muhler, M.; Schuhmann, W. Amorphous cobalt boride (Co2B) as a highly efficient nonprecious catalyst for electrochemical water splitting: Oxygen and hydrogen evolution. Adv. Energy Mater. 2016, 6, 1502313.

42

Chen, P. Z.; Xu, K.; Zhou, T. P.; Tong, Y.; Wu, J. C.; Cheng, H.; Lu, X. L.; Ding, H.; Wu, C. Z.; Xie, Y. Strong-coupled cobalt borate nanosheets/graphene hybrid as electrocatalyst for water oxidation under both alkaline and neutral conditions. Angew. Chem., Int. Ed. 2016, 55, 2488-2492.

43

Indra, A.; Menezes, P. W.; Sahraie, N. R.; Bergmann, A.; Das, C.; Tallarida, M.; Schmeiβer, D.; Strasser, P.; Driess, M. Unification of catalytic water oxidation and oxygen reduction reactions: Amorphous beat crystalline cobalt iron oxides. J. Am. Chem. Soc. 2014, 136, 17530-17536.

44

Bergmann, A.; Martinez-Moreno, E.; Teschner, D.; Chernev, P.; Gliech, M.; de Araújo, J. F.; Reier, T.; Dau, H.; Strasser, P. Reversible amorphization and the catalytically active state of crystalline Co3O4 during oxygen evolution. Nat. Commun. 2015, 6, 8625.

45

Li, F. W.; Zhao, S. -F.; Chen, L.; Khan, A.; MacFarlane, D. R.; Zhang, J. Polyethylenimine promoted electrocatalytic reduction of CO2 to CO in aqueous medium by graphene-supported amorphous molybdenum sulphide. Energy Environ. Sci. 2016, 9, 216-223.

46

Yan, X. D.; Tian, L. H.; He, M.; Chen, X. B. Three-dimensional crystalline/amorphous Co/Co3O4 core/shell nanosheets as efficient electrocatalysts for the hydrogen evolution reaction. Nano Lett. 2015, 15, 6015-6021.

47

Irshad, A.; Munichandraiah, N. High catalytic activity of amorphous ir-pi for oxygen evolution reaction. ACS Appl. Mater. Interfaces 2015, 7, 15765-15776.

48

Long, X.; Li, J. K.; Xiao, S.; Yan, K. Y.; Wang, Z. L.; Chen, H. N.; Yang, S. H. A strongly coupled graphene and FeNi double hydroxide hybrid as an excellent electrocatalyst for the oxygen evolution reaction. Angew. Chem., Int. Ed. 2014, 53, 7584-7588.

49

McCrory, C. C. L.; Jung, S.; Peters, J. C.; Jaramillo, T. F. Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction. J. Am. Chem. Soc. 2013, 135, 16977-16987.

50

Liu, G.; Qiu, F. Y.; Li, J.; Wang, Y. J.; Li, L.; Yan, C.; Jiao, L. F.; Yuan, H. T. NiB nanoparticles: A new nickel-based catalyst for hydrogen storage properties of MgH2. Int. J. Hydrogen Energy 2012, 37, 17111-17117.

51

Biesinger, M. C.; Payne, B. P.; Lau, L. W. M.; Gerson, A.; Smart, R. S. C. X-ray photoelectron spectroscopic chemical state quantification of mixed nickel metal, oxide and hydroxide systems. Surf. Interface Anal. 2009, 41, 324-332.

52

Grosvenor, A. P.; Kobe, B. A.; Biesinger, M. C.; McIntyre, N. S. Investigation of multiplet splitting of Fe 2p XPS spectra and bonding in iron compounds. Surf. Interface Anal. 2004, 36, 1564-1574.

53

Chen, Y. -W.; Sasirekha, N. Preparation of NiFeB nanoalloy catalysts and their applications in liquid-phase hydrogenation of p-chloronitrobenzene. Ind. Eng. Chem. Res. 2009, 48, 6248-6255.

54

Zhao, Q.; Yu, Z. B.; Yuan, W.; Li, J. P. A WO3/Ag-Bi oxygen-evolution catalyst for splitting water under mild conditions. Int. J. Hydrogen Energy 2012, 37, 13249-13255.

55

Wang, W.; Zhao, Q.; Dong, J. X.; Li, J. P. A novel silver oxides oxygen evolving catalyst for water splitting. Int. J. Hydrogen Energy 2011, 36, 7374-7380.

56

Bediako, D. K.; Lassalle-Kaiser, B.; Surendranath, Y.; Yano, J.; Yachandra, V. K.; Nocera, D. G. Structure-activity correlations in a nickel-borate oxygen evolution catalyst. J. Am. Chem. Soc. 2012, 134, 6801-6809.

File
12274_2017_1783_MOESM1_ESM.pdf (5 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 09 June 2017
Revised: 18 July 2017
Accepted: 28 July 2017
Published: 02 February 2018
Issue date: March 2018

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany 2017

Acknowledgements

Acknowledgements

We appreciate the financial funding supported by the National Natural Science Foundation of China (No. 51402205), Natural Science Foundation of Shanxi (No. 2015021058) and Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi (No. STIP-2016131).

Return