Journal Home > Volume 11 , Issue 3

Silicene, the silicon counterpart of graphene, has been successfully grown on metallic substrates such as Ag(111), ZrB2(0001), and Ir(111) surfaces. However, characterization of its electronic structure is hampered by the metallic substrate. In addition, potential applications of silicene in nanoelectronic devices will require its growth on or integration with semiconducting and insulating substrates. We herein present a review of recent theoretical works regarding the interaction of silicene with non-metallic templates, distinguishing between the weak van-der-Waals-like interactions of silicene with, for example, layered metal (di)chalcogenides, and the stronger covalent bonding between silicene and, for example, ZnS surfaces. We then present a methodology to effectively compare the stability of diverse silicene structures using thermodynamics and molecular dynamics density functional theory calculations. Recent experimental results on the growth of silicene on MoS2 are also reported and compared to the theoretical predictions.


menu
Abstract
Full text
Outline
About this article

Silicene on non-metallic substrates: Recent theoretical and experimental advances

Show Author's information Emilio Scalise1( )Kostantina Iordanidou2Valeri V. Afanas’ev2André Stesmans2Michel Houssa2( )
Max-Planck-Institut für Eisenforschung, Max-Planck Straße 1, D-40237DüsseldorfGermany
Department of Physics and Astronomy, University of Leuven, Celestijnenlaan 200D, B-3001LeuvenBelgium

Abstract

Silicene, the silicon counterpart of graphene, has been successfully grown on metallic substrates such as Ag(111), ZrB2(0001), and Ir(111) surfaces. However, characterization of its electronic structure is hampered by the metallic substrate. In addition, potential applications of silicene in nanoelectronic devices will require its growth on or integration with semiconducting and insulating substrates. We herein present a review of recent theoretical works regarding the interaction of silicene with non-metallic templates, distinguishing between the weak van-der-Waals-like interactions of silicene with, for example, layered metal (di)chalcogenides, and the stronger covalent bonding between silicene and, for example, ZnS surfaces. We then present a methodology to effectively compare the stability of diverse silicene structures using thermodynamics and molecular dynamics density functional theory calculations. Recent experimental results on the growth of silicene on MoS2 are also reported and compared to the theoretical predictions.

Keywords: silicene, non-metallic substrates, chalcogenide, MoS2 , layered compounds

References(78)

1

Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666-669.

2

Novoselov, K. S.; Jiang, D.; Schedin, F.; Booth, T.; Khotkevich, V. V.; Morozov, S. V.; Geim, A. K. Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. USA 2005, 102, 10451-10453.

3

Butler, S. Z.; Hollen, S. M.; Cao, L. Y.; Cui, Y.; Gupta, J. A.; Gutiérrez, H. R.; Heinz, T. F.; Hong, S. S.; Huang, J. X.; Ismach, A. F. et al. Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano 2013, 7, 2898-2926.

4

Fiori, G.; Bonaccorso, F.; Iannaccone, G.; Palacios, T.; Neumaier, D.; Seabaugh, A.; Banerjee, S. K.; Colombo, L. Electronics based on two-dimensional materials. Nat. Nanotechnol. 2014, 9, 768-779.

5

Schwierz, F.; Pezoldt, J.; Granzner, R. Two-dimensional materials and their prospects in transistor electronics. Nanoscale 2015, 7, 8261-8283.

6

Vogt, P.; De Padova, P.; Quaresima, C.; Avila, J.; Frantzeskakis, E.; Asensio, M. C.; Resta, A.; Ealet, B.; Le Lay, G. Silicene: Compelling experimental evidence for graphenelike two- dimensional silicon. Phys. Rev. Lett. 2012, 108, 155501.

7

Dávila, M. E.; Xian, L.; Cahangirov, S.; Rubio, A.; Le Lay, G. Germanene: A novel two-dimensional germanium allotrope akin to graphene and silicone. New J. Phys. 2014, 16, 095002.

8

Derivaz, M.; Dentel, D.; Stephan, R.; Hanf, M. C.; Mehdaoui, A.; Sonnet, P.; Pirri, C. Continuous germanene layer on Al(111). Nano Lett. 2015, 15, 2510-2516.

9

Zhu, F. F.; Chen, W. J.; Xu, Y.; Gao, C. L.; Guan, D. D.; Liu, C. H.; Qian, D.; Zhang, S. C.; Jia, J. F. Epitaxial growth of two-dimensional stanene. Nat. Mater. 2015, 14, 1020-1025.

10

Takeda, K.; Shiraishi, K. Theoretical possibility of stage corrugation in Si and Ge analogs of graphite. Phys. Rev. B 1994, 50, 14916-14922.

11

Cahangirov, S.; Topsakal, M.; Aktürk, E.; Şahin, H.; Ciraci, S. Two- and one-dimensional honeycomb structures of silicon and germanium. Phys. Rev. Lett. 2009, 102, 236804.

12

Ezawa, M. Valley-polarized metals and quantum anomalous hall effect in silicene. Phys. Rev. Lett. 2012, 109, 055502.

13

Ezawa, M. A topological insulator and helical zero mode in silicene under an inhomogeneous electric field. New J. Phys. 2012, 14, 033003.

14

Scalise, E.; Houssa, M.; Pourtois, G.; van den Broek, B.; Afanas'ev, V.; Stesmans, A. Vibrational properties of silicene and germanene. Nano Res. 2013, 6, 19-28.

15

Matthes, L.; Pulci, O.; Bechstedt, F. Optical properties of two-dimensional honeycomb crystals graphene, silicene, germanene, and tinene from first principles. New J. Phys. 2014, 16, 105007.

16

Houssa, M.; Dimoulas, A.; Molle, A. Silicene: A review of recent experimental and theoretical investigations. J. Phys. : Condens. Matter 2015, 27, 253002.

17

Feng, B. J.; Ding, Z. J.; Meng, S.; Yao, Y. G.; He, X. Y.; Cheng, P.; Chen, L.; Wu, K. Evidence of silicene in honeycomb structures of silicon on Ag(111). Nano Lett. 2012, 12, 3507-3511.

18

Chiappe, D.; Grazianetti, C.; Tallarida, G.; Fanciulli, M.; Molle, A. Local electronic properties of corrugated silicene phases. Adv. Mat. 2012, 24, 5088-5093.

19

Enriquez, H.; Vizzini, S.; Kara, A.; Lalmi, B.; Oughaddou, H. Silicene structures on silver surfaces. J. Phys. : Condens. Matter 2012, 24, 314211.

20

Tsoutsou, D.; Xenogiannopoulou, E.; Golias, E.; Tsipas, P.; Dimoulas, A. Evidence for hybrid surface metallic band in (4 × 4) silicene on Ag(111). Appl. Phys. Lett. 2013, 103, 231604.

21

Moras, P.; Mentes, T. O.; Sheverdyaeva, P. M.; Locatelli, A.; Carbone, C. Coexistence of multiple silicene phases in silicon grown on Ag(111). J. Phys. : Condens. Matter 2014, 26, 185001.

22

Fleurence, A.; Friedlein, R.; Ozaki, T.; Kawai, H.; Wang, Y.; Yamada-Takamura, Y. Experimental evidence for epitaxial silicene on diboride thin films. Phys. Rev. Lett. 2012, 108, 245501.

23

Lee, C. C.; Fleurence, A.; Yamada-Takamura, Y.; Ozaki, T.; Friedlein, R. Band structure of silicene on zirconium diboride (0001) thin-film surface: Convergence of experiment and calculations in the one-Si-atom Brillouin zone. Phys. Rev. B 2014, 90, 075422.

24

Meng, L.; Wang, Y. L.; Zhang, L. Z.; Du, S. X.; Wu, R. T.; Li, L. F.; Zhang, Y.; Li, G.; Zhou, H. T.; Hofer, W. A. et al. Buckled silicene formation on Ir(111). Nano Lett. 2013, 13, 685-690.

25

Tao, L.; Cinquanta, E.; Chiappe, D.; Grazianetti, C.; Fanciulli, M.; Dubey, M.; Molle, A.; Akinwande, D. Silicene field-effect transistors operating at room temperature. Nat. Nanotechnol. 2015, 10, 227-231.

26

Jose, D.; Datta, A. Structures and chemical properties of silicene: unlike graphene. Acc. Chem. Res. 2014, 47, 593-602.

27

Balendhran, S.; Walia, S.; Nili, H.; Sriram, S.; Bhaskaran, M. Elemental analogues of graphene: Silicene, germanene, stanene, and phosphorene. Small 2015, 11, 640-652.

28

Lew Yan Voon, L. C.; Zhu, J. J.; Schwingenschlögl, U. Silicene: Recent theoretical advances. Appl. Phys. Rev. 2016, 3, 040802.

29

Molle, A.; Goldberger, J.; Houssa, M.; Xu, Y.; Zhang, S. C.; Akinwande, D. Buckled two-dimensional Xene sheets. Nat. Mater. 2017, 16, 163-169.

30

Houssa, M.; Pourtois, G.; Afanas'ev, V. V.; Stesmans, A. Can silicon behave like graphene? A first-principles study. Appl. Phys. Lett. 2010, 97, 112106.

31

Scalise, E.; Houssa, M.; Cinquanta, E.; Grazianetti, C.; van den Broek, B.; Pourtois, G.; Stesmans, A.; Fanciulli, M.; Molle, A. Engineering the electronic properties of silicene by tuning the composition of MoX2 and GaX (X = S, Se, Te) chalchogenide templates. 2D Mater. 2014, 1, 011010.

32

Li, L. Y.; Zhao, M. W. Structures, energetics, and electronic properties of multifarious stacking patterns for high-buckled and low-buckled silicene on the MoS2 substrate. J. Phys. Chem. C 2014, 118, 19129-19138.

33

Houssa, M.; van den Broek, B.; Scalise, E.; Pourtois, G.; Afanas'ev, V. V.; Stesmans, A. An electric field tunable energy band gap at silicene/(0001) ZnS interfaces. Phys. Chem. Chem. Phys. 2013, 15, 3702-3705.

34

Molle, A.; Lamperti, A.; Rotta, D.; Fianciulli, M.; Cinquanta, E.; Grazianetti, C. Electron confinement at the Si/MoS2 heterosheet interface. Adv. Mater. Interfaces 2016, 3, 1500619.

35

Scalise, E.; Houssa, M. Predicting 2D silicon allotropes on SnS2. Nano Res. 2017, 10, 1697-1079.

36

Houssa, M.; Pourtois, G.; Heyns, M. M.; Afanas'ev, V. V.; Stesmans, A. Electronic properties of silicene: Insights from first-principles modeling. J. Electrochem. Soc. 2011, 158, H107-H110.

37

Ding, Y.; Wang, Y. L. Electronic structures of silicene/GaS heterosheets. Appl. Phys. Lett. 2013, 103, 043114.

38

Zhu, J. J.; Schwingenschlögl, U. Stability and electronic properties of silicene on WSe2. J. Mater. Chem. C 2015, 3, 3946-3953.

39

Chiappe, D.; Scalise, E.; Cinquanta, E.; Grazianetti, C.; van den Broek, B.; Fanciulli, M.; Houssa, M.; Molle, A. Two- dimensional Si nanosheets with local hexagonal structure on a MoS2 surface. Adv. Mater. 2014, 26, 2096-2101.

40

Zhu, J. J.; Schwingenschlögl, U. Structural and electronic properties of silicene on MgX2 (X = Cl, Br, and I). ACS Appl. Mat. Interfaces 2014, 6, 11675-11681.

41

Li, L. Y.; Wang, X. P.; Zhao, X. Y. .; Zhao, M. W. Moiré superstructures of silicene on hexagonal boron nitride: A first-principles study. Phys. Lett. A 2013, 377, 2628-2632.

42

Kokott, S.; Pflugradt, P.; Matthes, L.; Bechstedt, F. Nonmetallic substrates for growth of silicene: An ab initio prediction. J. Phys. : Condens. Matter 2014, 26, 185002.

43

Badylevich, M.; Shamuilia, S.; Afanas'ev, V. V.; Stesmans, A.; Fedorenko, Y. G.; Zhao, C. Electronic structure of the interface of aluminum nitride with Si(100). J. Appl. Phys. 2008, 104, 093713.

44

Xu, Y. N.; Ching, W. Y. Electronic, optical, and structural properties of some wurtzite crystals. Phys. Rev. B 1993, 48, 4335-4351.

45

Freeman, C. L.; Claeyssens, F.; Allan, N. L.; Harding, J. H. Graphitic nanofilms as precursors to wurtzite films: Theory. Phys. Rev. Lett. 2006, 96, 066102.

46

Tsipas, P.; Kassavetis, S.; Tsoutsou, D.; Xenogiannopoulou, E.; Golias, E.; Giamini, S. A.; Grazianetti, C.; Chiappe, D.; Molle, A.; Fanciulli, M. et al. Evidence for graphite-like hexagonal AlN nanosheets epitaxially grown on single crystal Ag(111). Appl. Phys. Lett. 2013, 103, 251605.

47

Kam, K. K.; Parkinson, B. Detailed photocurrent spectroscopy of the semiconducting group VIB transition metal dichalcogenides. J. Chem. Phys. 1982, 86, 463-467.

48

Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinx, T. F. Atomically thin MoS2: A new direct-gap semiconductor Phys. Rev. Lett. 2010, 105, 136805.

49

Splendiani, A.; Sun, L.; Zhang, Y. B.; Li, T. S.; Kim, J.; Chim, C. Y.; Galli, G.; Wang, F. Emerging photoluminescence in monolayer MoS2. Nano Lett. 2010, 10, 1271-1275.

50

Han, S. W.; Kwon, H.; Kim, S. K.; Ryu, S.; Yun, W. S.; Kim, D. H.; Hwang, J. H.; Kang, J. -S.; Baik, J.; Shin, H. J. et al. Band-gap transition induced by interlayer van der Waals interaction in MoS2. Phys. Rev. B 2011, 84, 045409.

51

Coleman, J. N.; Lotya, M.; O'Neill, A.; Bergin, S. D.; King, P. J.; Khan, U.; Young, K.; Gaucher, A.; De, S.; Smith, R. J. et al. Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 2011, 331, 568-571.

52

Bertolazzi, S.; Brivio, J.; Kis, A. Stretching and breaking of ultrathin MoS2. ACS Nano 2011, 5, 9703-9709.

53

Lebegue, S.; Eriksson, O. Electronic structure of two- dimensional crystals from ab initio theory. Phys. Rev. B 2009, 79, 115409.

54

Li, T. S.; Galli, G. Electronic properties of MoS2 nanoparticles. J. Phys. Chem. C 2007, 111, 16192-16196.

55

Ataca, C.; Sahin, H.; Akturk, E.; Ciraci, S. Mechanical and electronic properties of MoS2 nanoribbons and their defects. J. Phys. Chem. C 2011, 115, 3934-3941.

56

Langreth, D. C.; Dion, M.; Rydberg, H.; Schroeder, E.; Hyldgaard, P.; Lundqvis, B. I. Van der Waals density functional theory with applications. Int. J. Quant. Chem. 2005, 101, 599-610.

57

Gao, N.; Li, J. C.; Jiang, Q. Tunable band gaps in silicene- MoS2 heterobilayers. Phys. Chem. Chem. Phys. 2014, 16, 11673-11678.

58

Pflugradt, P.; Matthes, L.; Bechstedt, F. Silicene-derived phases on Ag(111) substrate versus coverage: Ab initio studies. Phys. Rev. B 2014, 89, 035403.

59

Wilsonand, J. A.; Yoffe, A. D. The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties. Adv. Phys. 1969, 18, 193-335.

60

Böker, Th.; Severin, R.; Müller, A.; Janowitz, C.; Manzke, R.; Voβ, D.; Krüger, P.; Mazur, A.; Pollmann, J. Band structure of MoS2, MoSe2, and α-MoTe2: Angle-resolved photoelectron spectroscopy and ab initio calculations. Phys. Rev. B 2001, 64, 235305.

61

Cinquanta, E.; Scalise, E.; Chiappe, D.; Grazianetti, C.; van den Broek, B.; Houssam, M.; Fanciulli, M.; Molle, A. Getting through the nature of silicene: An sp2-sp3 two-dimensional silicon nanosheet. J. Phys. Chem. C 2013, 117, 16719-16724.

62

Lew Yan Voon, L. C.; Sandberg, E.; Aga, R. S.; Farajian, A. A. Hydrogen compounds of group-IV nanosheets. Appl. Phys. Lett. 2010, 97, 163114.

63

Houssa, M.; Scalise, E.; Sankaran, K.; Pourtois, G.; Afanas'ev, V. V.; Stesmans, A. Electronic properties of hydrogenated silicene and germanene. Appl. Phys. Lett. 2011, 98, 223107.

64

Quhe, R. H.; Fei, R. X.; Liu, Q. H.; Zheng, J. X.; Li, H.; Xu, C. Y.; Ni, Z. Y.; Wang, Y. Y.; Yu, D. P.; Gao, Z. X. et al. Tunable and sizable band gap in silicene by surface adsorption. Sci. Rep. 2012, 2, 853.

65

Ding, Y.; Wang, Y. L. Electronic structures of silicene fluoride and hydride. Appl. Phys. Lett. 2012, 100, 083102.

66

van den Broek, B.; Houssa, M.; Scalise, E.; Pourtois, G.; Afanas'ev, V. V.; Stesmans, A. First-principles electronic functionalization of silicene and germanene by adatom chemisorption. Appl. Surf. Sci. 2014, 291, 104-108.

67

Kaloni, T. P.; Singh, N.; Schwingenschlögl, U. Prediction of a quantum anomalous Hall state in Co-decorated silicone. Phys. Rev. B 2014, 89, 035409.

68

Li, S. S.; Zhang, C. W.; Yan, S. S.; Hu, S. J.; Ji, W. X.; Wang, P. J.; Li, P. Novel band structures in silicene on monolayer zinc sulfide substrate. J. Phys. : Condens. Matter 2014, 26, 395003.

69

Weber, M. J. Handbook of Laser Science and Technology; CRC Press: Boca Raton, 1986.

70

Northrup, J. E.; Neugebauer, J. Theory of GaN(101 0) and (1120) surfaces. Phys. Rev. B 1996, 53, R10477.

71

Filippetti, A.; Fiorentini, V.; Cappellini, G.; Bosin, A. Anomalous relaxations and chemical trends at Ⅲ-V semiconductor nitride nonpolar surfaces. Phys. Rev. B 1999, 59, 8026-8031.

72

Zhang, X. J.; Zhang, H. Y.; He, T.; Zhao, M. W. Size- dependent structural and electronic properties of ZnS nanofilms: An ab initio study. J. Appl. Phys. 2010, 108, 064317.

73

Wander, A.; Schedin, F.; Steadman, P.; Norris, A.; McGrath, R.; Turner, T. S.; Thornton, G.; Harrison, N. M. Stability of polar oxide surfaces. Phys. Rev. Lett. 2001, 86, 3811-3814.

74

Meyer B.; Marx, D. Density-functional study of the structure and stability of ZnO surfaces. Phys. Rev. B 2003, 67, 035403.

75

Houssa, M.; van den Broek, B.; Scalise, E.; Pourtois, G.; Afanas'ev, V.; Stesmans, A. (Invited) theoretical study of silicene and germanene. ECS Trans. 2013, 53, 51-62.

76

Giannozzi, P.; Baroni, S.; Bonini, N.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Chiarotti, G. L.; Cococcioni, M.; Dabo, I. et al. QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials. J. Phys. : Condens. Matter 2009, 21, 395502.

77

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865-3868.

78

Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 2006, 27, 1787-1799.

Publication history
Copyright
Acknowledgements

Publication history

Received: 13 September 2016
Revised: 24 July 2017
Accepted: 28 July 2017
Published: 02 February 2018
Issue date: March 2018

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany 2017

Acknowledgements

Acknowledgements

This work has been financially supported by the European Project 2D-NANOLATTICES, within the Future and Emerging Technologies (FET) program of the European Commission, under the FET-grant number 270749, as well as the KU Leuven Research Funds, project GOA/13/011. We are grateful to A. Molle (MDM Laboratory), A. Dimoulas (NCSR Demokritos) and G. Pourtois (imec) for their valuable contributions to this work and for stimulating discussions.

Return