Journal Home > Volume 11 , Issue 3

Spindle-shaped anatase TiO2 secondary particles were successfully fabricated via the oriented attachment of primary nanocrystals. By adjusting the concentration of tetrabutyl titanate, the size of the TiO2 nanocrystals and particles could be controlled, resulting in pore evolution. Pores for the random aggregation of secondary particles gradually transformed to nanopores originating from the oriented attachment of the primary nanocrystals, resulting in an excellent micro/nanostructure that increased the performance of a sodium-ion battery. The mesoporous TiO2 microparticle anode, with its unique combination of nanocrystals and uniform nanopores, displays super durability (95 mAh/g after 11, 000 cycles at 1 C), high initial efficiency (61.4%), and excellent rate performance (265 and 77 mAh/g at 0.1 and 20 C, respectively). In particular, at slow discharge (0.1 C) and fast charge (5, 50, and 100 C) rates, the anatase TiO2 shows remarkable initial charge capacities of 200, 119, and 56 mAh/g, corresponding to 172, 127, and 56 mAh/g, after 150 cycles, respectively, thus meeting the requirements for fast energy storage. This excellent performance can be attributed to the stability of the material and its high ionic conductivity, resulting from the stable architecture with a mesoporous microstructure and without the random aggregation of secondary particles. A fundamental understanding of the pore structure and controllable pore construction has been proven to be effective in increasing the rate capability and durability of nanostructured electrode materials.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Mesoporous TiO2 microparticles formed by the oriented attachment of nanocrystals: A super-durable anode material for sodium-ion batteries

Show Author's information Liming Ling1Ying Bai1,2( )Huali Wang1Qiao Ni1Jiatao Zhang3Feng Wu1,2Chuan Wu1,2( )
Beijing Key Laboratory of Environmental Science and EngineeringSchool of Materials Science and EngineeringBeijing Institute of TechnologyBeijing100081China
Collaborative Innovation Center of Electric Vehicles in BeijingBeijing100081China
Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green ApplicationsSchool of Materials Science and EngineeringBeijing Institute of TechnologyBeijing100081China

Abstract

Spindle-shaped anatase TiO2 secondary particles were successfully fabricated via the oriented attachment of primary nanocrystals. By adjusting the concentration of tetrabutyl titanate, the size of the TiO2 nanocrystals and particles could be controlled, resulting in pore evolution. Pores for the random aggregation of secondary particles gradually transformed to nanopores originating from the oriented attachment of the primary nanocrystals, resulting in an excellent micro/nanostructure that increased the performance of a sodium-ion battery. The mesoporous TiO2 microparticle anode, with its unique combination of nanocrystals and uniform nanopores, displays super durability (95 mAh/g after 11, 000 cycles at 1 C), high initial efficiency (61.4%), and excellent rate performance (265 and 77 mAh/g at 0.1 and 20 C, respectively). In particular, at slow discharge (0.1 C) and fast charge (5, 50, and 100 C) rates, the anatase TiO2 shows remarkable initial charge capacities of 200, 119, and 56 mAh/g, corresponding to 172, 127, and 56 mAh/g, after 150 cycles, respectively, thus meeting the requirements for fast energy storage. This excellent performance can be attributed to the stability of the material and its high ionic conductivity, resulting from the stable architecture with a mesoporous microstructure and without the random aggregation of secondary particles. A fundamental understanding of the pore structure and controllable pore construction has been proven to be effective in increasing the rate capability and durability of nanostructured electrode materials.

Keywords: oriented attachment, durability, sodium ion batteries, pore evolution, mesoporous TiO2

References(60)

1

Tarascon, J. -M. Is lithium the new gold? Nat. Chem. 2010, 2, 510–510.

2

Yabuuchi, N.; Kubota, K.; Dahbi, M.; Komaba, S. Research development on sodium-ion batteries. Chem. Rev. 2014, 114, 11636–11682.

3

Hong, S. Y.; Kim, Y.; Park, Y.; Choi, A.; Choi, N. -S.; Lee, K. T. Charge carriers in rechargeable batteries: Na ions vs. Li ions. Energy Environ. Sci. 2013, 6, 2067–2081.

4

Fang, C.; Huang, Y. H.; Zhang, W. X.; Han, J. T.; Deng, Z.; Cao, Y. L.; Yang, H. X. Routes to high energy cathodes of sodium-ion batteries. Adv. Energy Mater. 2016, 6, 1501727.

5

Ni, Q.; Bai, Y.; Wu, F.; Wu, C. Polyanion-type electrode materials for sodium-ion batteries. Adv. Sci. 2017, 4, 1600275.

6

Li, H.; Bai, Y.; Wu, F.; Ni, Q.; Wu, C. Na-rich Na3+xV2−xNix(PO4)3/C for sodium ion batteries: Controlling the doping site and improving the electrochemical performances. ACS Appl. Mater. Interfaces 2016, 8, 27779–27787.

7

Bai, Y.; Zhao, L. X.; Wu, C.; Li, H.; Li, Y.; Wu, F. Enhanced sodium ion storage behavior of P2-type Na2/3Fe1/2Mn1/2O2 synthesized via a chelating agent assisted route. ACS Appl. Mater. Interfaces 2016, 8, 2857–2865.

8

You, Y.; Yu, X. Q.; Yin, Y. X.; Nam, K. W.; Guo, Y. G. Sodium iron hexacyanoferrate with high Na content as a Na-rich cathode material for Na-ion batteries. Nano Res. 2015, 8, 117–128.

9

Chen, G. H.; Bai, Y.; Li, H.; Li, Y.; Wang, Z. H.; Ni, Q.; Liu, L.; Wu, F.; Yao, Y. G.; Wu, C. Multilayered electride Ca2N electrode via compression molding fabrication for sodium ion batteries. ACS Appl. Mater. Interfaces 2017, 9, 6666–6669.

10

Sun, J.; Lee, H. -W.; Pasta, M.; Yuan, H. T.; Zheng, G. Y.; Sun, Y. M.; Li, Y. Z; Cui, Y. A phosphorene-graphene hybrid material as a high-capacity anode for sodium-ion batteries. Nat. Nanotechnol. 2015, 10, 980–985.

11

Bai, Y.; Wang, Z.; Wu, C.; Xu, R.; Wu, F.; Liu, Y. C.; Li, H.; Li, Y.; Lu, J.; Amine, K. Hard carbon originated from polyvinyl chloride nanofibers as high-performance anode material for Na-ion battery. ACS Appl. Mater. Interfaces 2015, 7, 5598–5604.

12

Roh, H. -K.; Kim, H. -K.; Kim, M. -S.; Kim, D. -H.; Chung, K. Y.; Roh, K. C.; Kim, K. -B. In situ synthesis of chemically bonded NaTi2(PO4)3/rGO 2D nanocomposite for high-rate sodium-ion batteries. Nano Res. 2016, 9, 1844–1855.

13

Luo, W.; Shen, F.; Bommier, C.; Zhu, H. L.; Ji, X. L.; Hu, L. B. Na-ion battery anodes: Materials and electrochemistry. Acc. Chem. Res. 2016, 49, 231–240.

14

Bai, Y.; Liu, Y. C.; Li, Y.; Ling, L. M.; Wu, F.; Wu, C. Mille- feuille shaped hard carbons derived from polyvinylpyrrolidone via environmentally friendly electrostatic spinning for sodium ion battery anodes. RSC Adv. 2017, 7, 5519–5527.

15

Liu, G.; Yang, H. G.; Pan, J.; Yang, Y. Q.; Lu, G. Q.; Cheng, H. -M. Titanium dioxide crystals with tailored facets. Chem. Rev. 2014, 114, 9559–9612.

16

Shoaib, A.; Ji, M. W.; Qian, H. M.; Liu, J. J.; Xu, M.; Zhang, J. T. Noble metal nanoclusters and their in situ calcination to nanocrystals: Precise control of their size and interface with TiO2 nanosheets and their versatile catalysis applications. Nano Res. 2016, 9, 1763–1774.

17

Xiong, H.; Slater, M. D.; Balasubramanian, M.; Johnson, C. S.; Rajh, T. Amorphous TiO2 nanotube anode for rechargeable sodium ion batteries. J. Phys. Chem. Lett. 2011, 2, 2560–2565.

18

Xu, Y.; Memarzadeh Lotfabad, E.; Wang, H. L.; Farbod, B.; Xu, Z. W.; Kohandehghan, A.; Mitlin, D. Nanocrystalline anatase TiO2: A new anode material for rechargeable sodium ion batteries. Chem. Commun. 2013, 49, 8973–8975.

19

Huang, J. P.; Yuan, D. D.; Zhang, H. Z.; Cao, Y. L.; Li, G. R.; Yang, H. X.; Gao, X. P. Electrochemical sodium storage of TiO2(B) nanotubes for sodium ion batteries. RSC Adv. 2013, 3, 12593–12597.

20

Pérez-Flores, J. C.; Baehtz, C.; Kuhn, A.; García-Alvarado, F. Hollandite-type TiO2: A new negative electrode material for sodium-ion batteries. J. Mater. Chem. A 2014, 2, 1825–1833.

21

Usui, H.; Yoshioka, S.; Wasada, K.; Shimizu, M.; Sakaguchi, H. Nb-doped rutile TiO2: A potential anode material for Na-ion battery. ACS Appl. Mater. Interfaces 2015, 7, 6567–6573.

22

Hanaor, D. A. H.; Sorrell, C. C. Review of the anatase to rutile phase transformation. J. Mater. Sci. 2010, 46, 855–874.

23

Wang, B. F.; Zhao, F.; Du, G. D.; Porter, S.; Liu, Y.; Zhang, P.; Cheng, Z. X.; Liu, H. K.; Huang, Z. G. Boron-doped anatase TiO2 as a high-performance anode material for sodium-ion batteries. ACS Appl. Mater. Interfaces 2016, 8, 16009–16015.

24

Hwang, J. -Y.; Myung, S. -T.; Lee, J. -H.; Abouimrane, A.; Belharouak, I.; Sun, Y. -K. Ultrafast sodium storage in anatase TiO2 nanoparticles embedded on carbon nanotubes. Nano Energy 2015, 16, 218–226.

25

Chen, C. J.; Wen, Y. W.; Hu, X. L.; Ji, X. L.; Yan, M. Y.; Mai, L. Q.; Hu, P.; Shan, B.; Huang, Y. H. Na+ intercalation pseudocapacitance in graphene-coupled titanium oxide enabling ultra-fast sodium storage and long-term cycling. Nat. Commun. 2015, 6, 6929–6936.

26

Henry, A.; Louvain, N.; Fontaine, O.; Stievano, L.; Monconduit, L.; Boury, B. Synthesis of titania@carbon nanocomposite from urea-impregnated cellulose for efficient lithium and sodium batteries. ChemSusChem 2016, 9, 264–273.

27

Kim, K. -T.; Ali, G.; Chung, K. Y.; Yoon, C. S.; Yashiro, H.; Sun, Y. -K.; Lu, J.; Amine, K.; Myung, S. -T. Anatase titania nanorods as an intercalation anode material for rechargeable sodium batteries. Nano Lett. 2014, 14, 416–422.

28

Yang, X. M.; Wang, C.; Yang, Y. C.; Zhang, Y.; Jia, X. N.; Chen, J.; Ji, X. B. Anatase TiO2 nanocubes for fast and durable sodium ion battery anodes. J. Mater. Chem. A 2015, 3, 8800–8807.

29

Yan, D.; Yu, C. Y.; Bai, Y.; Zhang, W. F.; Chen, T. Q.; Hu, B. W.; Sun, Z.; Pan, L. K. Sn-doped TiO2 nanotubes as superior anode materials for sodium ion batteries. Chem. Commun. 2015, 51, 8261–8264.

30

Tahir, M. N.; Oschmann, B.; Buchholz, D.; Dou, X. W.; Lieberwirth, I.; Panthöfer, M.; Tremel, W.; Zentel, R.; Passerini, S. Extraordinary performance of carbon-coated anatase TiO2 as sodium-ion anode. Adv. Energy Mater. 2016, 6, 1501489.

31

Bruce, P. G.; Scrosati, B.; Tarascon, J. -M. Nanomaterials for rechargeable lithium batteries. Angew. Chem., Int. Ed. 2008, 47, 2930–2946.

32

Uchaker, E.; Cao, G. Z. Mesocrystals as electrode materials for lithium-ion batteries. Nanotoday 2014, 9, 499–524.

33

Jo, M. K.; Hong, Y. S.; Choo, J.; Cho, J. Effect of LiCoO2 cathode nanoparticle size on high rate performance for Li-ion batteries. J. Electrochem. Soc. 2009, 156, A430–A434.

34

Ge, X.; Gu, C. D.; Wang, X. L.; Tu, J. P. Correlation between microstructure and electrochemical behavior of the mesoporous Co3O4 sheet and its ionothermal synthesized hydrotalcite-like α-Co(OH)2 precursor. J. Phys. Chem. C 2014, 118, 911–923.

35

Lee, S. H.; Yu, S. -H.; Lee, J. E.; Jin, A.; Lee, D. J.; Lee, N.; Jo, H.; Shin, K.; Ahn, T. -Y.; Kim, Y. -W. et al. Self-assembled Fe3O4 nanoparticle clusters as high-performance anodes for lithium ion batteries via geometric confinement. Nano Lett. 2013, 13, 4249–4256.

36

Bommier, C.; Luo, W.; Gao, W. -Y.; Greaney, A.; Ma, S. Q.; Ji, X. L. Predicting capacity of hard carbon anodes in sodium-ion batteries using porosity measurements. Carbon 2014, 76, 165–174.

37

Ye, J. F.; Liu, W.; Cai, J. G.; Chen, S.; Zhao, X. W.; Zhou, H. H.; Qi, L. M. Nanoporous anatase TiO2 mesocrystals: Additive-free synthesis, remarkable crystalline-phase stability, and improved lithium insertion behavior. J. Am. Chem. Soc. 2011, 133, 933–940.

38

Zhang, Q.; Liu, S. -J.; Yu, S. -H. Recent advances in oriented attachment growth and synthesis of functional materials: concept, evidence, mechanism, and future. J. Mater. Chem. 2008, 19, 191–207.

39

Qian, H. M.; Zhao, Q.; Dai, B. S.; Guo, L. J.; Zhang, J. X.; Liu, J. J.; Zhang, J. T.; Zhu, H. S. Oriented attachment of nanoparticles to form micrometer-sized nanosheets/nanobelts by topotactic reaction on rigid/flexible substrates with improved electronic properties. NPG Asia Mater. 2015, 7, e152.

40

Crossland, E. J. W.; Noel, N.; Sivaram, V.; Leijtens, T.; Alexander-Webber, J. A.; Snaith, H. J. Mesoporous TiO2 single crystals delivering enhanced mobility and optoelectronic device performance. Nature 2013, 495, 215–219.

41

Wang, J.; Zhou, Y. K.; Hu, Y. Y.; O'Hayre, R.; Shao, Z. P. Facile synthesis of nanocrystalline TiO2 mesoporous microspheres for lithium-ion batteries. J. Phys. Chem. C 2011, 115, 2529–2536.

42

Zeng, L. X.; Zheng, C.; Xia, L. C.; Wang, Y. X.; Wei, M. D. Ordered mesoporous TiO2-C nanocomposite as an anode material for long-term performance lithium-ion batteries. J. Mater. Chem. A 2013, 1, 4293–4299.

43

Grosso, D.; de A. A. Soler-Illia, G. J.; Crepaldi, E. L.; Charleux, B.; Sanchez, C. Nanocrystalline transition-metal oxide spheres with controlled multi-scale porosity. Adv. Funct. Mater. 2003, 13, 37–42.

44

Matos, J. R.; Kruk, M.; Mercuri, L. P.; Jaroniec, M.; Zhao, L.; Kamiyama, T.; Terasaki, O.; Pinnavaia, T. J.; Liu, Y. Ordered mesoporous silica with large cage-like pores:   Structural identification and pore connectivity design by controlling the synthesis temperature and time. J. Am. Chem. Soc. 2003, 125, 821–829.

45

Yuan, C. Z.; Zhang, X. G.; Su, L. H.; Gao, B.; Shen, L. F. Facile synthesis and self-assembly of hierarchical porous NiO nano/micro spherical superstructures for high performance supercapacitors. J. Mater. Chem. 2009, 19, 5772–5777.

46

Lou, X. W.; Deng, D.; Lee, J. Y.; Archer, L. A. Thermal formation of mesoporous single-crystal Co3O4 nano-needles and their lithium storage properties. J. Mater. Chem. 2008, 18, 4397–4401.

47

Yu, J. G.; Su, Y. R.; Cheng, B.; Zhou, M. H. Effects of pH on the microstructures and photocatalytic activity of mesoporous nanocrystalline titania powders prepared via hydrothermal method. J. Mol. Catal. A: Chem. 2006, 258, 104–112.

48

Zhao, X. W.; Jin, W. Z.; Cai, J. G.; Ye, J. F.; Li, Z. H.; Ma, Y. R.; Xie, J. L.; Qi, L. M. Shape- and size-controlled synthesis of uniform anatase TiO2 nanocuboids enclosed by active {100} and {001} facets. Adv. Funct. Mater. 2011, 21, 3554–3563.

49

Yin, Y. D.; Alivisatos, A. P. Colloidal nanocrystal synthesis and the organic–inorganic interface. Nature 2005, 437, 664–670.

50

Schliehe, C.; Juarez, B. H.; Pelletier, M.; Jander, S.; Greshnykh, D.; Nagel, M.; Meyer, A.; Foerster, S.; Kornowski, A.; Klinke, C. et al. Ultrathin PbS sheets by two-dimensional oriented attachment. Science 2010, 329, 550–553.

51

Bai, F.; Wang, D. S.; Huo, Z. Y.; Chen, W.; Liu, L. P.; Liang, X.; Chen, C.; Wang, X.; Peng, Q.; Li, Y. D. A versatile bottom-up assembly approach to colloidal spheres from nanocrystals. Angew. Chem., Int. Ed. 2007, 46, 6650–6653.

52

Bishop, K. J. M.; Wilmer, C. E.; Soh, S.; Grzybowski, B. A. Nanoscale forces and their uses in self-assembly. Small 2009, 5, 1600–1630.

53

Chowdhury, I.; Walker, S. L.; Mylon, S. E. Aggregate morphology of nano-TiO2: Role of primary particle size, solution chemistry, and organic matter. Environ. Sci. Process. Impacts 2012, 15, 275–282.

54

Liu, H. S.; Bi, Z. H.; Sun, X. G.; Unocic, R. R.; Paranthaman, M. P.; Dai, S.; Brown, G. M. Mesoporous TiO2-B microspheres with superior rate performance for lithium ion batteries. Adv. Mater. 2011, 23, 3450–3454.

55

Ren, Y.; Hardwick, L. J.; Bruce, P. G. Lithium intercalation into mesoporous anatase with an ordered 3D pore structure. Angew. Chem., Int. Ed. 2010, 49, 2570–2574.

56

Ge, M. Y.; Rong, J. P.; Fang, X.; Zhou, C. W. Porous doped silicon nanowires for lithium ion battery anode with long cycle life. Nano Lett. 2012, 12, 2318–2323.

57

Li, L.; Raji, A. R. O.; Tour, J. M. Graphene-wrapped MnO2 graphene nanoribbons as anode materials for high-performance lithium ion batteries. Adv. Mater. 2013, 25, 6298–6302.

58

Wu, L. M.; Bresser, D.; Buchholz, D.; Giffin, G. A.; Castro, C. R.; Ochel, A.; Passerini, S. Unfolding the mechanism of sodium insertion in anatase TiO2 nanoparticles. Adv. Energy Mater. 2015, 5, 1401142.

59

Oh, S. -M.; Hwang, J. -Y.; Yoon, C. S.; Lu, J.; Amine, K.; Belharouak, I.; Sun, Y. -K. High electrochemical performances of microsphere C-TiO2 anode for sodium-ion battery. ACS Appl. Mater. Interfaces 2014, 6, 11295–11301.

60

Xu, Y.; Zhou, M.; Wen, L. Y.; Wang, C. L.; Zhao, H. P.; Mi, Y.; Liang, L. Y.; Fu, Q.; Wu, M. H.; Lei, Y. Highly ordered three-dimensional Ni-TiO2 nanoarrays as sodium ion battery anodes. Chem. Mater. 2015, 27, 4274–4280.

File
12274_2017_1772_MOESM1_ESM.pdf (2.4 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 06 March 2017
Revised: 20 July 2017
Accepted: 21 July 2017
Published: 02 February 2018
Issue date: March 2018

Copyright

© Tsinghua University Press and Springer‐Verlag GmbH Germany 2017

Acknowledgements

Acknowledgements

This work was supported by the National Basic Research Program of China (No. 2015CB251100), and the Program for New Century Excellent Talents in University (No. NCET-13-0033).

Return