Journal Home > Volume 11 , Issue 3

Stretchable electronics are in high demand for next-generation wearable devices, but their fabrication is still challenging. Stretchable conductors, flexible pressure sensors, and foldable light-emitting diodes (LEDs) have been reported; however, the fabrication of stable stretchable batteries, as power suppliers for wearable devices, is significantly behind the development of other stretchable electronics. Several stretchable lithium-ion batteries and primary batteries have been fabricated, but their low capacities and complicated manufacturing processes are obstacles for practical applications. Herein, we report a stretchable zinc/manganese-oxide (Zn-MnO2) full battery based on a silver-nanowire-coated sponge prepared via a facile dip-coating process. The spongy electrode, with a three-dimensional (3D) binary network structure, provided not only high conductivity and stretchability, but also enabled a high mass loading of electrochemically active materials (Zn and MnO2 particles). The fabricated Zn-MnO2 battery exhibited an areal capacity as high as 3.6 mAh·cm-2 and could accommodate tensile strains of up to 100% while retaining 89% of its original capacity. The facile solution-based strategy of dip-coating active materials onto a cheap sponge-based stretchable current collector opens up a new avenue for fabricating stretchable batteries.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Dip-coating processed sponge-based electrodes for stretchable Zn-MnO2 batteries

Show Author's information Hong-Wu Zhu§Jin Ge§Yu-Can PengHao-Yu ZhaoLu-An ShiShu-Hong Yu( )
Division of Nanomaterials & ChemistryHefei National Laboratory for Physical Sciences at the MicroscaleCollaborative Innovation Center of Suzhou Nano Science and TechnologyDepartment of ChemistryCAS Centre for Excellence in NanoscienceHefei Science Centre of CASUniversity of Science and Technology of ChinaHefei230026China

§ Hong-Wu Zhu and Jin Ge contributed equally to this work.

Abstract

Stretchable electronics are in high demand for next-generation wearable devices, but their fabrication is still challenging. Stretchable conductors, flexible pressure sensors, and foldable light-emitting diodes (LEDs) have been reported; however, the fabrication of stable stretchable batteries, as power suppliers for wearable devices, is significantly behind the development of other stretchable electronics. Several stretchable lithium-ion batteries and primary batteries have been fabricated, but their low capacities and complicated manufacturing processes are obstacles for practical applications. Herein, we report a stretchable zinc/manganese-oxide (Zn-MnO2) full battery based on a silver-nanowire-coated sponge prepared via a facile dip-coating process. The spongy electrode, with a three-dimensional (3D) binary network structure, provided not only high conductivity and stretchability, but also enabled a high mass loading of electrochemically active materials (Zn and MnO2 particles). The fabricated Zn-MnO2 battery exhibited an areal capacity as high as 3.6 mAh·cm-2 and could accommodate tensile strains of up to 100% while retaining 89% of its original capacity. The facile solution-based strategy of dip-coating active materials onto a cheap sponge-based stretchable current collector opens up a new avenue for fabricating stretchable batteries.

Keywords: stretchable battery, Zn-MnO2 battery, silver nanowires, sponge, binary network structure

References(37)

1

Pan, S. W.; Yang, Z. B.; Chen, P. N.; Deng, J.; Li, H. P.; Peng, H. S. Wearable solar cells by stacking textile electrodes. Angew. Chem., Int. Ed. 2014, 126, 6224–6228.

2

Song, Y. M.; Xie, Y. Z.; Malyarchuk, V.; Xiao, J. L.; Jung, I.; Choi, K. -J.; Liu, Z. J.; Park, H.; Lu, C. F.; Kim, R. -H. et al. Digital cameras with designs inspired by the arthropod eye. Nature 2013, 497, 95–99.

3

Lipomi, D. J.; Vosgueritchian, M.; Tee, B. C. K.; Hellstrom, S. L.; Lee, J. A.; Fox, C. H.; Bao, Z. N. Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes. Nat. Nanotechnol. 2011, 6, 788–792.

4

Kim, D. -H.; Lu, N. S.; Ma, R.; Kim, Y. -S.; Kim, R. -H.; Wang, S. D.; Wu, J.; Won, S. M.; Tao, H.; Islam, A. et al. Epidermal electronics. Science 2011, 333, 838–843.

5

Yamada, T.; Hayamizu, Y.; Yamamoto, Y.; Yomogida, Y.; Izadi-Najafabadi, A.; Futaba, D. N.; Hata, K. A stretchable carbon nanotube strain sensor for human-motion detection. Nat. Nanotechnol. 2011, 6, 296–301.

6

Melzer, M.; Kaltenbrunner, M.; Makarov, D.; Karnaushenko, D.; Karnaushenko, D.; Sekitani, T.; Someya, T.; Schmidt, O. G. Imperceptible magnetoelectronics. Nat. Commun. 2015, 6, 6080.

7

Yao, S. S.; Zhu, Y. Nanomaterial-enabled stretchable conductors: strategies, materials and devices. Adv. Mater. 2015, 27, 1480–1511.

8

Bandodkar, A. J.; Nunez-Flores, R.; Jia, W.; Wang, J. All-printed stretchable electrochemical devices. Adv. Mater. 2015, 27, 3060–3065.

9

Xie, K. Y.; Wei, B. Q. Materials and structures for stretchable energy storage and conversion devices. Adv. Mater. 2014, 26, 3592–3617.

10

Yu, C. J.; Masarapu, C.; Rong, J. P.; Wei, B. Q.; Jiang, H. Q. Stretchable supercapacitors based on buckled single-walled carbon-nanotube macrofilms. Adv. Mater. 2009, 21, 4793–4797.

11

Hyun, D. C.; Park, M.; Park, C.; Kim, B.; Xia, Y. N.; Hur, J. H.; Kim, J. M.; Park, J. J.; Jeong, U. Ordered zigzag stripes of polymer gel/metal nanoparticle composites for highly stretchable conductive electrodes. Adv. Mater. 2011, 23, 2946–2950.

12

Gray, D. S.; Tien, J.; Chen, C. S. High-conductivity elastomeric electronics. Adv. Mater. 2004, 16, 393–397.

13

Xu, S.; Zhang, Y. H.; Cho, J.; Lee, J.; Huang, X.; Jia, L.; Fan, J. A.; Su, Y. W.; Su, J.; Zhang, H. G. et al. Stretchable batteries with self-similar serpentine interconnects and integrated wireless recharging systems. Nat. Commun. 2013, 4, 1543.

14

Song, Z. M.; Ma, T.; Tang, R.; Cheng, Q.; Wang, X.; Krishnaraju, D.; Panat, R.; Chan, C. K.; Yu, H. Y.; Jiang, H. Q. Origami lithium-ion batteries. Nat. Commun. 2014, 5, 3140.

15

Kwon, Y. H.; Woo, S. -W.; Jung, H. -R.; Yu, H. K.; Kim, K.; Oh, B. H.; Ahn, S.; Lee, S. -Y.; Song, S. -W.; Cho, J. et al. Cable-type flexible lithium ion battery based on hollow multi-helix electrodes. Adv. Mater. 2012, 24, 5192–5197.

16

Yan, C. Y.; Wang, X.; Cui, M. Q.; Wang, J. Q.; Kang, W. X.; Foo, C. Y.; Lee, P. S. Stretchable silver-zinc batteries based on embedded nanowire elastic conductors. Adv. Energy. Mater. 2014, 4, 1301396.

17

Park, J.; Wang, S. D.; Li, M.; Ahn, C.; Hyun, J. K.; Kim, D. S.; Kim do, K.; Rogers, J. A.; Huang, Y. G.; Jeon, S. Three-dimensional nanonetworks for giant stretchability in dielectrics and conductors. Nat. Commun. 2012, 3, 916.

18

Sekitani, T.; Noguchi, Y.; Hata, K.; Fukushima, T.; Aida, T.; Someya, T. A rubberlike stretchable active matrix using elastic conductors. Science 2008, 321, 1468–1472.

19

Sun, Y. M.; Lopez, J.; Lee, H. -W.; Liu, N.; Zheng, G. Y.; Wu, C. -L.; Sun, J.; Liu, W.; Chung, J. W.; Bao, Z. et al. A stretchable graphitic carbon/Si anode enabled by conformal coating of a self-healing elastic polymer. Adv. Mater. 2016, 28, 2455–2461.

20

Lee, S.; Shin, S.; Lee, S.; Seo, J.; Lee, J.; Son, S.; Cho, H. J.; Algadi, H.; Al-Sayari, S.; Kim, D. E. et al. Ag nanowire reinforced highly stretchable conductive fibers for wearable electronics. Adv. Funct. Mater. 2015, 25, 3114–3121.

21

Kim, Y.; Zhu, J.; Yeom, B.; Di Prima, M.; Su, X. L.; Kim, J. -G.; Yoo, S. J.; Uher, C.; Kotov, N. A. Stretchable nanoparticle conductors with self-organized conductive pathways. Nature 2013, 500, 59–63.

22

Chen, X. L.; Lin, H. J.; Deng, J.; Zhang, Y.; Sun, X. M.; Chen, P. N.; Fang, X.; Zhang, Z. T.; Guan, G. Z.; Peng, H. S. Electrochromic fiber-shaped supercapacitors. Adv. Mater. 2014, 26, 8126–8132.

23

Yang, Z. B.; Deng, J.; Chen, X. L.; Ren, J.; Peng, H. S. A highly stretchable, fiber-shaped supercapacitor. Angew. Chem., Int. Ed. 2013, 52, 13453–13457.

24

Ren, J.; Zhang, Y.; Bai, W. Y.; Chen, X. L.; Zhang, Z. T.; Fang, X.; Weng, W.; Wang, Y. G.; Peng, H. S. Elastic and wearable wire-shaped lithium-ion battery with high electrochemical performance. Angew. Chem., Int. Ed. 2014, 126, 7998–8003.

25

Park, M.; Im, J.; Shin, M.; Min, Y.; Park, J.; Cho, H.; Park, S.; Shim, M. B.; Jeon, S.; Chung, D. Y. et al. Highly stretchable electric circuits from a composite material of silver nanoparticles and elastomeric fibres. Nat. Nanotechnol. 2012, 7, 803–809.

26

Chun, K. -Y.; Oh, Y.; Rho, J.; Ahn, J. -H.; Kim, Y. -J.; Choi, H. R.; Baik, S. Highly conductive, printable and stretchable composite films of carbon nanotubes and silver. Nat. Nanotechnol. 2010, 5, 853–857.

27

Lang, X. Y.; Hirata, A.; Fujita, T.; Chen, M. W. Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors. Nat. Nanotechnol. 2011, 6, 232–236.

28

Gaikwad, A. M.; Zamarayeva, A. M.; Rousseau, J.; Chu, H.; Derin, I.; Steingart, D. A. Highly stretchable alkaline batteries based on an embedded conductive fabric. Adv. Mater. 2012, 24, 5071–5076.

29

Kettlgruber, G.; Kaltenbrunner, M.; Siket, C. M.; Moser, R.; Graz, I. M.; Schwödiauer, R.; Bauer, S. Intrinsically stretchable and rechargeable batteries for self-powered stretchable electronics. J. Mater. Chem. A 2013, 1, 5505–5508.

30

Ge, J.; Yao, H. -B.; Wang, X.; Ye, Y. -D.; Wang, J. -L.; Wu, Z. -Y.; Liu, J. -W.; Fan, F. -J.; Gao, H. -L.; Zhang, C. -L. et al. Stretchable conductors based on silver nanowires: Improved performance through a binary network design. Angew. Chem., Int. Ed. 2013, 52, 1654–1659.

31

Pan, H. L.; Shao, Y. Y.; Yan, P. F.; Cheng, Y. W.; Han, K. S.; Nie, Z. M.; Wang, C. M.; Yang, J. H.; Li, X. L.; Bhattacharya, P. et al. Reversible aqueous zinc/manganese oxide energy storage from conversion reactions. Nat. Energy 2016, 1, 16039.

32

Lee, J. -Y.; Connor, S. T.; Cui, Y.; Peumans, P. Solution- processed metal nanowire mesh transparent electrodes. Nano Lett. 2008, 8, 689–692.

33

Chen, M. T.; Zhang, L.; Duan, S. S.; Jing, S. L.; Jiang, H.; Li, C. Z. Highly stretchable conductors integrated with a conductive carbon nanotube/graphene network and 3D porous poly(dimethylsiloxane). Adv. Funct. Mater. 2014, 24, 7548–7556.

34

Friis, E. A.; Lakes, R. S.; Park, J. B. Negative Poisson's ratio polymeric and metallic foams. J. Mater. Sci. 1988, 23, 4406–4414.

35

Gaikwad, A. M.; Whiting, G. L.; Steingart, D. A.; Arias, A. C. Highly flexible, printed alkaline batteries based on mesh-embedded electrodes. Adv. Mater. 2011, 23, 3251–3255.

36

Kaltenbrunner, M.; Kettlgruber, G.; Siket, C.; Schwödiauer, R.; Bauer, S. Arrays of ultracompliant electrochemical dry gel cells for stretchable electronics. Adv. Mater. 2010, 22, 2065–2067.

37

Gaikwad, A. M.; Steingart, D. A.; Nga Ng, T.; Schwartz, D. E.; Whiting, G. L. A flexible high potential printed battery for powering printed electronics. Appl. Phys. Lett. 2013, 102, 233302.

Video
12274_2017_1771_MOESM2_ESM.avi
File
12274_2017_1771_MOESM1_ESM.pdf (1.2 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 22 May 2017
Revised: 16 July 2017
Accepted: 18 July 2017
Published: 02 February 2018
Issue date: March 2018

Copyright

© Tsinghua University Press and Springer‐Verlag GmbH Germany 2017

Acknowledgements

Acknowledgements

We acknowledge the funding support from the National Natural Science Foundation of China (Nos. 21431006 and 21761132008), the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (No. 21521001), Key Research Program of Frontier Sciences, CAS (No. QYZDJ-SSWSLH036), the National Basic Research Program of China (No. 2014CB931800), and the Users with Excellence and Scientific Research Grant of Hefei Science Center of CAS (No. 2015HSC-UE007).

Return