Journal Home > Volume 11 , Issue 3

This paper presents a wafer-level and highly controllable fabrication technology for silicon nanowire field-effect transistor (SiNW-FET arrays) on (111) silicon-on-insulator (SOI) wafers. Herein, 3, 000 SiNW FET array devices were designed and fabricated on 4-inch wafers with a rate of fine variety of more than 90% and a dimension deviation of the SiNWs of less than ± 20 nm in each array. As such, wafer-level and highly controllable fabricated SiNW FET arrays were realized. These arrays showed excellent electrical properties and highly sensitive determination of pH values and nitrogen dioxide. The high-performance of the SiNW FET array devices in liquid and gaseous environments can enable the detection under a wide range of conditions. This fabrication technology can lay the foundation for the large-scale application of SiNWs.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Wafer-level and highly controllable fabricated silicon nanowire transistor arrays on (111) silicon-on-insulator (SOI) wafers for highly sensitive detection in liquid and gaseous environments

Show Author's information Xun Yang1,2Anran Gao1Yuelin Wang1Tie Li1( )
Science and Technology on Micro-system LaboratoryShanghai Institute of Microsystem and Information TechnologyChinese Academy of SciencesShanghai200050China
University of Chinese Academy of Sciences (UCAS)Beijing100190China

Abstract

This paper presents a wafer-level and highly controllable fabrication technology for silicon nanowire field-effect transistor (SiNW-FET arrays) on (111) silicon-on-insulator (SOI) wafers. Herein, 3, 000 SiNW FET array devices were designed and fabricated on 4-inch wafers with a rate of fine variety of more than 90% and a dimension deviation of the SiNWs of less than ± 20 nm in each array. As such, wafer-level and highly controllable fabricated SiNW FET arrays were realized. These arrays showed excellent electrical properties and highly sensitive determination of pH values and nitrogen dioxide. The high-performance of the SiNW FET array devices in liquid and gaseous environments can enable the detection under a wide range of conditions. This fabrication technology can lay the foundation for the large-scale application of SiNWs.

Keywords: silicon nanowire array, top-down, wafer-level, high-controllable, high-performance

References(52)

1

Henning, A.; Swaminathan, N.; Godkin, A.; Shalev, G.; Amit, I.; Rosenwaks, Y. Tunable diameter electrostatically formed nanowire for high sensitivity gas sensing. Nano Res. 2015, 8, 2206–2215.

2

Hu, J. T.; Ouyang, M.; Yang, P. D.; Lieber, C. M. Controlled growth and electrical properties of heterojunctions of carbon nanotubes and silicon nanowires. Nature 1999, 399, 48–51.

3

Nozaki, D.; Kunstmann, J.; Zörgiebel, F.; Pregl, S.; Baraban, L.; Weber, W. M.; Mikolajick, T.; Cuniberti, G. Ionic effects on the transport characteristics of nanowire-based FETs in a liquid environment. Nano Res. 2014, 7, 380–389.

4

Yang, C.; Zhong, Z. H.; Lieber, C. M. Encoding electronic properties by synthesis of axial modulation-doped silicon nanowires. Science 2005, 310, 1304–1307.

5

Patolsky, F.; Zheng, G. F.; Lieber, C. M. Fabrication of silicon nanowire devices for ultrasensitive, label-free, real-time detection of biological and chemical species. Nat. Protoc. 2006, 1, 1711–1724.

6

Singh, A. K.; Ko, D. H.; Vishwakarma, N. K.; Jang, S.; Min, K. I.; Kim, D. P. Micro-total envelope system with silicon nanowire separator for safe carcinogenic chemistry. Nat. Commun. 2016, 7, 10741.

7

Duan, X. X.; Li, Y.; Rajan, N. K.; Routenberg, D. A.; Modis, Y.; Reed, M. A. Quantification of the affinities and kinetics of protein interactions using silicon nanowire biosensors. Nat. Nanotechnol. 2012, 7, 401–407.

8

Luthcke, S. B.; Arendt, A. A.; Rowlands, D. D.; McCarthy, J. J.; Larsen, C. F. Recent glacier mass changes in the gulf of Alaska region from GRACE mascon solutions. J. Glaciol. 2008, 54, 767–777.

9

Hu, S.; Leu, P. W.; Marshall, A. F.; McIntyre, P. C. Single- crystal germanium layers grown on silicon by nanowire seeding. Nat. Nanotechnol. 2009, 4, 649–653.

10

Cui, Y.; Wei, Q. Q.; Park, H.; Lieber, C. M. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 2001, 293, 1289–1292.

11

Dávila, D.; Tarancón, A.; Fernández-Rregúlez, M.; Calaza, C.; Salleras, M.; San Paulo, A.; Fonseca, L.; Silicon nanowire arrays as thermoelectric material for a power microgenerator. J. Micromech. Microeng. 2011, 21, 104007.

12

Peng, K. Q.; Xu, Y.; Wu, Y.; Yan, Y. J.; Lee, S. T.; Zhu, J. Aligned single-crystalline Si nanowire arrays for photovoltaic applications. Small 2005, 1, 1062–1067.

13

Ma, D. D. D.; Lee, C. S.; Au, F. C. K.; Tong, S. Y.; Lee, S. T. Small-diameter silicon nanowire surfaces. Science 2003, 299, 1874–1877.

14

Dhara, S.; Mele, E. J.; Agarwal, R. Voltage-tunable circular photogalvanic effect in silicon nanowires. Science 2015, 349, 726–729.

15

Chung, S. W.; Yu, J. Y.; Heath, J. R. Silicon nanowire devices. Appl. Phys. Lett. 2000, 76, 2068–2070.

16

Wang, J.; Polizzi, E.; Lundstrom, M. A three-dimensional quantum simulation of silicon nanowire transistors with the effective-mass approximation. J. Appl. Phys. 2004, 96, 2192–2203.

17

Park, I.; Li, Z. Y.; Pisano, A. P.; Williams, R. S. Top-down fabricated silicon nanowire sensors for real-time chemical detection. Nanotechnology 2010, 21 (1): 015501.

18

Ruffo, R.; Hong, S. S.; Chan, C. K.; Huggins, R. A.; Cui, Y. Impedance analysis of silicon nanowire lithium ion battery anodes. J. Phys. Chem. C. 2009, 113, 11390–11398.

19

Ahn, Y.; Dunning, J.; Park, J. Scanning photocurrent imaging and electronic band studies in silicon nanowire field effect transistors. Nano Lett. 2005, 5, 1367–1370.

20

Huang, R. G.; Tham, D.; Wang, D. W.; Heath, J. R. High performance ring oscillators from 10-nm wide silicon nanowire field-effect transistors. Nano Res. 2011, 4, 1005–1012.

21

Liu, N.; Yao, Y.; Cha, J. J.; McDowell, M. T.; Han, Y.; Cui, Y. Functionalization of silicon nanowire surfaces with metal- organic frameworks. Nano Res. 2012, 5, 109–116.

22

Bae, J. M.; Lee, W. J.; Ma, J. W.; Cho, M. H.; Ahn, J. P.; Lee, H. S. The oxidation characteristics of silicon nanowires grown with an Au catalyst. Nano Res. 2012, 5, 152–163.

23

Park, N. M.; Choi, C. J. Growth of silicon nanowires in aqueous solution under atmospheric pressure. Nano Res. 2014, 7, 898–902.

24

Zhang, L. M.; Liu, C.; Wong, A. B.; Resasco, J.; Yang, P. D. MoS2-wrapped silicon nanowires for photoelectrochemical water reduction. Nano Res. 2015, 8, 281–287.

25

Yang, K. K.; Cantarero, A.; Rubio, A.; Agosta, R. D. Optimal thermoelectric figure of merit of Si/Ge core–shell nanowires. Nano Res. 2015, 8, 2611–2619.

26

Zhong, X.; Wang, G. M.; Papandrea, B.; Li, M. F.; Xu, Y. X.; Chen, Y.; Chen, C. Y.; Zhou, H. L.; Xue, T.; Li, Y. J. et al. Reduced graphene oxide/silicon nanowire heterostructures with enhanced photoactivity and superior photoelectrochemical stability. Nano Res. 2015, 8, 2850–2858.

27

Liu, Q.; Wu, F. L.; Cao, F. R.; Chen, L.; Xie, X. J.; Wang, W. C.; Tian, W.; Li, L. A multijunction of ZnIn2S4 nanosheet/ TiO2 film/Si nanowire for significant performance enhancement of water splitting. Nano Res. 2015, 8, 3524–3534.

28

Kim, Y.; Jeon, Y.; Kim, M.; Kim, S. NOR logic function of a bendable combination of tunneling field-effect transistors with silicon nanowire channels. Nano Res. 2016, 9, 499–506.

29

Gao, A. R.; Lu, N.; Wang, Y. C.; Dai, P. F.; Li, T.; Gao, X. L.; Wang, Y. L.; Fan, C. H. Enhanced sensing of nucleic acids with silicon nanowire field effect transistor biosensors. Nano Lett. 2012, 12, 5262–5268.

30

Wang, C.; Ye, M.; Cheng, L.; Li, R.; Zhu, W. W.; Shi, Z.; Fan, C. H.; He, J. K.; Liu, J.; Liu, Z. Simultaneous isolation and detection of circulating tumor cells with a microfluidic silicon-nanowire-array integrated with magnetic upconversion nanoprobes. Biomaterials 2015, 54, 55–62.

31

Wang, D. W.; Sheriff, B. A.; McAlpine, M.; Heath, J. R. Development of ultra-high density silicon nanowire arrays for electronics applications. Nano Res. 2008, 1, 9–21.

32

Fan, R.; Wu, Y. Y.; Li, D. Y.; Yue, M.; Majumdar, A.; Yang, P. D. Fabrication of silica nanotube arrays from vertical silicon nanowire templates. J. Am. Chem. Soc. 2003, 125, 5254–5255.

33

Huang, Z.; Fang, H.; Zhu, J. Fabrication of silicon nanowire arrays with controlled diameter, length, and density. Adv. Mater. 2007, 19, 744–748.

34

Engel, Y.; Elnathan, R.; Pevzner, A.; Davidi, G.; Flaxer, E.; Patolsky, F. Supersensitive detection of explosives by silicon nanowire arrays. Angew. Chem. , Int. Ed. 2010, 49, 6830–6835.

35

Peng, K. Q.; Zhang, M. L.; Lu, A. J.; Wong, N. B.; Zhang, R. Q.; Lee, S. T. Ordered silicon nanowire arrays via nanosphere lithography and metal-induced etching. Appl. Phys. Lett. 2007, 90, 163123.

36

Zhang, X. Y.; Zhang, L. D.; Meng, G. W.; Li, G. H.; Jin- Phillipp, N. Y.; Phillipp, F. Synthesis of ordered single crystal silicon nanowire arrays. Adv. Mater. 2001, 13, 1238–1241.

DOI
37

Whang, D.; Jin, S.; Wu, Y.; Lieber, C. M. Large-scale hierarchical organization of nanowire arrays for integrated nanosystems. Nano Lett. 2003, 3, 1255–1259.

38

Chen, X. J.; Zhang, J.; Wang, Z. L.; Yan, Q.; Hui, S. C. Humidity sensing behavior of silicon nanowires with hexamethyldisilazane modification. Sensor Actuat. B: Chem. 2011, 156, 631–636.

39

In, H. J.; Field, C. R.; Pehrsson, P. E. Periodically porous top electrodes on vertical nanowire arrays for highly sensitive gas detection. Nanotechnology 2011, 22, 355501.

40

Tian, B. Z.; Zheng, X. L.; Kempa, T. J.; Fang, Y.; Yu, N. F.; Yu, G. H.; Huang, J. L.; Lieber, B. Z. Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature 2007, 449, 885–889.

41

Tsakalakos, L.; Balch, J.; Fronheiser, J.; Korevaar, B. A.; Sulima, O.; Rand, J. Silicon nanowire solar cells. Appl. Phys. Lett. 2007, 91, 233117.

42

Peng, K. Q.; Wang, X.; Lee, S. T. Silicon nanowire array photoelectrochemical solar cells. Appl. Phys. Lett. 2008, 92, 163103.

43

Thiyagu, S.; Devi, B. P.; Pei, Z. Fabrication of large area high density, ultra-low reflection silicon nanowire arrays for efficient solar cell applications. Nano Res. 2011, 4, 1136–1143.

44

Garnett, E. C.; Yang, P. D. Silicon nanowire radial p-n junction solar cells. J. Am. Chem. Soc. 2008, 130, 9224–9225.

45

Shen, X. J.; Sun, B. Q.; Liu, D.; Lee, S. T. Hybrid heterojunction solar cell based on organicinorganic silicon nanowire array architecture. J. Am. Chem. Soc. 2011, 133, 19408–19415.

46

Fang, H.; Li, X. D.; Song, S.; Xu, Y.; Zhu, J. Fabrication of slantingly-aligned silicon nanowire arrays for solar cell applications. Nanotechnology 2008, 19, 255703.

47

Peng, K. Q.; Wang, X.; Wu, X. L.; Lee, S. T. Platinum nanoparticle decorated silicon nanowires for efficient solar energy conversion. Nano Lett. 2009, 9, 3704–3709.

48

Garnett, E.; Yang, P. D. Light trapping in silicon nanowire solar cells. Nano Lett. 2010, 10, 1082–1087.

49

Li, Z.; Chen, Y.; Li, X.; Kamins, T. I.; Nauka, K.; Williams, R. S. Sequence-specific label-free DNA sensors based on silicon nanowires. Nano Lett. 2004, 4, 245–247.

50

Park, I.; Li, Z. Y.; Pisano, A. P.; Williams, R. S. Selective surface functionalization of silicon nanowires via nanoscale joule heating. Nano Lett. 2007, 7, 3106–3111.

51

Lee, K. N.; Jung, S. W.; Shin, K. S.; Kim, W. H.; Lee, M. H.; Seong, W. K. Fabrication of suspended silicon nanowire arrays. Small 2008, 4, 642–648.

52

Yu, X.; Wang, Y. C.; Zhou, H.; Liu, Y. X.; Wang, Y.; Li, T.; Wang, Y. L. Top-down fabricated silicon-nanowire-based field-effect transistor device on a (111) silicon wafer. Small 2013, 9, 525–530.

File
12274_2017_1768_MOESM1_ESM.pdf (1.1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 20 April 2017
Revised: 11 July 2017
Accepted: 13 July 2017
Published: 02 February 2018
Issue date: March 2018

Copyright

© Tsinghua University Press and Springer‐Verlag GmbH Germany 2017

Acknowledgements

Acknowledgements

We appreciate financial support from the National Key Research and Development Program of China (No. 2017YFA0207103), Project of National Natural Science Foundation of China (Nos. 91323304, 81402468, 61327811, and 91623106), Shanghai Youth Science and Technology Talent Sailing project (No. 14YF1407200), Project for Shanghai Outstanding Academic leaders (No. 15XD1504300) and Youth Innovation Promotion Association, CAS.

Return