Journal Home > Volume 11 , Issue 3

Silicon carbides are basilic ceramics with proper bandgaps (2.4–3.3 eV) and unique optical properties. SiC@C monocrystal nanocapsules with different morphologies, sizes, and crystal types were synthesized via the fast and facile direct current (DC) arc discharge plasma method. The influence of Ar atmosphere on the formation of nanocrystal SiC polytypes was investigated by optical emission spectroscopy (OES) diagnoses on the arc discharge plasma. Boltzmann's plot was used to estimate the temperatures of plasma containing different Ar concentrations as 10, 582 K (in 2 × 104 Pa of Ar partial pressure) and 14, 523 K (in 4 × 104 Pa of Ar partial pressure). It was found that higher energy state of plasma favors the ionization of carbon atoms and promotes the formation of α-SiC, while β-SiC is generally coexistent. Heat-treatment in air was applied to remove the carbon species in as-prepared SiC nanopowders. Thus, the intrinsic characters of SiC polytypes reappeared in the ultraviolet–visible (UV–vis) light absorbance. It was experimentally revealed that the direct bandgap of SiC is 5.72 eV, the indirect bandgap of β-SiC (3C) is 3.13 eV, and the indirect bandgap of α-SiC (6H) is 3.32 eV; visible quantum confinement effect is predicted for these polytypic SiC nanocrystals.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Optical emission spectroscopy diagnosis of energetic Ar ions in synthesis of SiC polytypes by DC arc discharge plasma

Show Author's information Jian Gao1Lei Zhou1Jingshuang Liang1Ziming Wang1Yue Wu2Javid Muhammad1Xinglong Dong1( )Shouzhe Li2Hongtao Yu3Xie Quan3( )
Key Laboratory of Materials Modification by LaserIon and Electron Beams (Ministry of Education)School of Materials Science and EngineeringDalian University of TechnologyDalian116024China
School of PhysicsDalian University of TechnologyDalian116024China
Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education)School of Environmental Science and TechnologyDalian University of TechnologyDalian116024China

Abstract

Silicon carbides are basilic ceramics with proper bandgaps (2.4–3.3 eV) and unique optical properties. SiC@C monocrystal nanocapsules with different morphologies, sizes, and crystal types were synthesized via the fast and facile direct current (DC) arc discharge plasma method. The influence of Ar atmosphere on the formation of nanocrystal SiC polytypes was investigated by optical emission spectroscopy (OES) diagnoses on the arc discharge plasma. Boltzmann's plot was used to estimate the temperatures of plasma containing different Ar concentrations as 10, 582 K (in 2 × 104 Pa of Ar partial pressure) and 14, 523 K (in 4 × 104 Pa of Ar partial pressure). It was found that higher energy state of plasma favors the ionization of carbon atoms and promotes the formation of α-SiC, while β-SiC is generally coexistent. Heat-treatment in air was applied to remove the carbon species in as-prepared SiC nanopowders. Thus, the intrinsic characters of SiC polytypes reappeared in the ultraviolet–visible (UV–vis) light absorbance. It was experimentally revealed that the direct bandgap of SiC is 5.72 eV, the indirect bandgap of β-SiC (3C) is 3.13 eV, and the indirect bandgap of α-SiC (6H) is 3.32 eV; visible quantum confinement effect is predicted for these polytypic SiC nanocrystals.

Keywords: nanostructures, SiC polytype, direct current (DC) arc discharge plasma, optical emission spectroscopy(OES)

References(54)

1

Wu, R. B.; Zhou, K.; Yue, C. Y.; Wei, J.; Pan, Y. Recent progress in synthesis, properties and potential applications of SiC nanomaterials. Prog. Mater. Sci. 2015, 72, 1–60.

2

Ou, Y.; Zhu, X. L.; Jokubavicius, V.; Yakimova, R.; Mortensen, N. A.; Syväjärvi, M.; Xiao, S. S.; Ou, H. Y. Broadband antireflection and light extraction enhancement in fluorescent SiC with nanodome structures. Sci. Rep. 2014, 4, 4662.

3

Minella, A. B.; Pohl, D.; Täschner, C.; Erni, R.; Ummethala, R.; Rümmeli, M. H.; Schultz, L.; Rellinghaus, B. Silicon carbide embedded in carbon nanofibres: Structure and band gap determination. Phys. Chem. Chem. Phys. 2014, 16, 24437–24442.

4

Lin, L. W. Synthesis and optical property of large-scale centimetres-long silicon carbide nanowires by catalyst-free CVD route under superatmospheric pressure conditions. Nanoscale 2011, 3, 1582–1591.

5

Wang, Y. T.; Liu, Y.; Wendler, E.; Hübner, R.; Anwand, W.; Wang, G.; Chen, X. L.; Tong, W.; Yang, Z. R.; Munnik, F. et al. Defect-induced magnetism in SiC: Interplay between ferromagnetism and paramagnetism. Phys. Rev. B 2015, 92, 174409.

6

Xie, S.; Guo, X. N.; Jin, G. Q.; Tong, X. L.; Wang, Y. Y.; Guo, X. Y. In situ grafted carbon on sawtooth-like SiC supported Ni for high-performance supercapacitor electrodes. Chem. Commun. 2014, 50, 228–230.

7

Chen, K.; Huang, Z. H.; Huang, J. T.; Fang, M. H.; Liu, Y. G.; Ji, H. P.; Yin, L. Synthesis of SiC nanowires by thermal evaporation method without catalyst assistant. Ceram. Int. 2013, 39, 1957–1962.

8

Tabata, A.; Imori, Y. Current density–voltage and admittance characteristics of hydrogenated nanocrystalline cubic SiC/ crystalline Si heterojunction diodes prepared with varying H2 gas flow rates. Solid-State Electron. 2015, 104, 33–38.

9

Wang, B.; Wang, Y. D.; Lei, Y. P.; Wu, N.; Gou, Y. Z.; Han, C.; Xie, S.; Fang, D. Mesoporous silicon carbide nanofibers with in situ embedded carbon for co-catalyst free photocatalytic hydrogen production. Nano Res. 2016, 9, 886–898.

10

Wu, R. B.; Zhou, K.; Yang, Z. H.; Qian, X. K.; Wei, J.; Liu, L.; Huang, Y. Z.; Kong, L. B.; Wang, L. Y. Moltensalt- mediated synthesis of SiC nanowires for microwave absorption applications. CrystEngComm 2013, 15, 570–576.

11

Wu, R. B.; Zhou, K.; Qian, X. K.; Wei, J.; Tao, Y.; Sow, C. H.; Wang, L. Y.; Huang, Y. Z. Well-aligned SiC nanoneedle arrays for excellent field emitters. Mater. Lett. 2013, 91, 220–223.

12

Wu, R. B.; Zhou, K.; Wei, J.; Huang, Y. Z.; Su, F.; Chen, J. J.; Wang, L. Y. Growth of tapered SiC nanowires on flexible carbon fabric: toward field emission applications. J. Phys. Chem. C 2012, 116, 12940–12945.

13

Botsoa, J.; Lysenko, V.; Géloën, A.; Marty, O.; Bluet, J. M.; Guillot, G. Application of 3C-SiC quantum dots for living cell imaging. Appl. Phys. Lett. 2008, 92, 173902.

14

Wang, Z. J.; Wei, M. M.; Jin, L.; Ning, Y. X.; Yu, L.; Fu, Q.; Bao, X. H. Simultaneous N-intercalation and N-doping of epitaxial graphene on 6H-SiC(0001) through thermal reactions with ammonia. Nano Res. 2013, 6, 399–408.

15

Li, Z. J.; Zhao, J.; Zhang, M.; Xia, J. Y.; Meng, A. SiC nanowires with thickness-controlled SiO2 shells: Fabrication, mechanism, reaction kinetics and photoluminescence properties. Nano Res. 2014, 7, 462–472.

16

Ortiz, A. L.; Sánchez-Bajo, F.; Cumbrera, F. L.; Guiberteau, F. The prolific polytypism of silicon carbide. J. Appl. Cryst. 2013, 46, 242–247.

17

Zywietz, A.; Karch, K.; Bechstedt, F. Influence of polytypism on thermal properties of silicon carbide. Phys. Rev. B, 1996, 54, 1791–1798.

18

Krishna, P.; Verma, A. R. Crystal-polymorphism in one dimension. Phys. Status Solidi (B), 1966, 17, 437–477.

19

Hofmann, M.; Zywietz, A.; Karch, K.; Bechstedt, F. Lattice dynamics of SiC polytypes within the bond-charge model. Phys. Rev. B 1994, 50, 13401–13411.

20

Maboudian, R.; Carraro, C.; Senesky, D. G.; Roper, C. S. Advances in silicon carbide science and technology at the micro- and nanoscales. J. Vac. Sci. Technol. A 2013, 31, 050805.

21

Persson, C.; Lindefelt, U. Detailed band structure for 3C-, 2H-, 4H-, 6H-SiC, and Si around the fundamental band gap. Phys. Rev. B 1996, 54, 10257–10260.

22

Okojie, R. S.; Xhang, M.; Pirouz, P.; Tumakha, S.; Jessen, G.; Brillson, L. J. Observation of 4H-SiC to 3C-SiC polytypic transformation during oxidation. Appl. Phys. Lett. 2001, 79, 3056–3058.

23

Durandurdu, M. Pressure-induced phase transition of SiC. J. Phys. -Condes. Matter 2004, 16, 4411–4417.

24

Hong, M. H.; Samant, A. V.; Pirouz, P. Stacking fault energy of 6H-SiC and 4H-SiC single crystals. Philos. Mag. A 2009, 80, 919–935.

25

Sugiyama, S.; Togaya, M. Phase relationship between 3C- and 6H-silicon carbide at high pressure and high temperature. J. Am. Ceram. Soc. 2001, 84, 3013–3016.

26

Okojie, R. S.; Holzheu, T.; Huang, X. R.; Dudley, M. X-ray diffraction measurement of doping induced lattice mismatch in n-type 4H-SiC epilayers grown on p-type substrates. Appl. Phys. Lett. 2003, 83, 1971–1973.

27

Guo, X. X.; Dai, D. J.; Fan, B. L.; Fan, J. Y. Experimental evidence of α → β phase transformation in SiC quantum dots and their size-dependent luminescence. Appl. Phys. Lett. 2014, 105, 193110.

28

Li, P., Xu, L. Q.; Qian, Y. T. Selective synthesis of 3C-SiC hollow nanospheres and nanowires. Cryst. Growth Des. 2008, 8, 2431–2436.

29

Dasog, M.; Smith, L. F.; Purkait, T. K.; Veinot, J. G. C. Low temperature synthesis of silicon carbide nanomaterials using a solid-state method. Chem. Commun. 2013, 49, 7004–7006.

30

Fan, J. Y.; Li, H. X.; Wang, J.; Xiao, M. Fabrication and photoluminescence of SiC quantum dots stemming from 3C, 6H, and 4H polytypes of bulk SiC. Appl. Phys. Lett. 2012, 101, 131906.

31

Yushin, G. N.; Cambaz, Z. G.; Gogotsi, Y.; Vyshnyakova, K. L.; Pereselentseva, L. N. Carbothermal synthesis of α-SiC micro-ribbons. J. Am. Ceram. Soc. 2007, 91, 83–87.

32

Bechelany, M.; Brioude, A.; Stadelmann, P.; Ferro, G.; Cornu, D.; Miele, P. Very long SiC-based coaxial nanocables with tunable chemical composition. Adv. Funct. Mater. 2007, 17, 3251–3257.

33

Dong, X. L.; Zhang, Z. D.; Zhao, X. G.; Chuang, Y. C. The preparation and characterization of ultrafine Fe-Ni particles. J. Mater. Res. 1999, 14, 398–406.

34

Zhang, X. F.; Guo, J. J.; Guan, P. F.; Liu, C. J.; Huang, H.; Xue, F. H.; Dong, X. L.; Pennycook, S. J.; Chisholm, M. F. Catalytically active single-atom niobium in graphitic layers. Nat. Commun. 2013, 4, 1924.

35

Yu, J. Y.; Gao, J.; Xue, F. H.; Yu, X. H.; Yu, H. T.; Dong, X. L.; Huang, H.; Ding, A.; Quan, X.; Cao, G. Z. Formation mechanism and optical characterization of polymorphic silicon nanostructures by DC arc-discharge. RSC Adv. 2015, 5, 68714–68721.

36

Gao, J.; Yu, J. Y.; Zhou, L.; Muhammad, J.; Dong, X. L.; Wang, Y. N.; Yu, H. T.; Quan, X.; Li, S. J.; Jung, Y. Interface evolution in the platelet-like SiC@C and SiC@SiO2 monocrystal nanocapsules. Nano Res. 2017, 10, 2644–2656.

37

Zhou, X. F.; Li, X.; Gao, Q. Z.; Yuan, J. L.; Wen, J. Q.; Fang, Y. P.; Liu, W.; Zhang, S. S.; Liu, Y. J. Metal-free carbon nanotube–SiC nanowire heterostructures with enhanced photocatalytic H2 evolution under visible light irradiation. Catal. Sci. Technol. 2015, 5, 2798–2806.

38

Kondo, T.; Okada, N.; Yamaguchi, Y.; Urai, J.; Aikawa, T.; Yuasa, M. Boron-doped nanodiamond powder prepared by solid-state diffusion method. Chem. Lett. 2015, 44, 627–629.

39

Ferrari, A. C.; Basko, D. M. Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat. Nanotechnol. 2013, 8, 235–246.

40

Nichols, J. A.; Saito, H.; Deck, C.; Bandaru, P. R. Artificial introduction of defects into vertically aligned multiwalled carbon nanotube ensembles: Application to electrochemical sensors. J. Appl. Phys. 2007, 102, 064306.

41

Vallerot, J. M.; Bourrat, X.; Mouchon, A.; Chollon, G. Quantitative structural and textural assessment of laminar pyrocarbons through Raman spectroscopy, electron diffraction and few other techniques. Carbon 2006, 44, 1833–1844.

42

Smovzh, D. V.; Kostogrud, I. A.; Sakhapov, S. Z.; Zaikovskii, A. V.; Novopashin, S. A. The synthesis of few-layered graphene by the arc discharge sputtering of a Si-C electrode. Carbon 2017, 112, 97–102.

43

Ke, W. W.; Feng, X.; Huang, Y. D. The effect of Si-nanocrystal size distribution on Raman spectrum. J. Appl. Phys. 2011, 109, 083526.

44

Bechelany, M.; Brioude, A.; Cornu, D.; Ferro, G.; Miele, P. A Raman spectroscopy study of individual SiC nanowires. Adv. Funct. Mater. 2007, 17, 939–943.

45

Rehman, N. U.; Khan, F. U.; Khattak, N. A. D.; Zakaullah, M. Effect of neon mixing on vibrational temperature of molecular nitrogen plasma generated at 13.56 MHz. Phys. Lett. A 2008, 372, 1462–1468.

46

Cao, T. F.; Zhang, H. B.; Yan, B. H.; Lu, W.; Cheng, Y. Optical emission spectroscopy diagnostic and thermodynamic analysis of thermal plasma enhanced nanocrystalline silicon CVD process. RSC Adv. 2014, 4, 15131–15137.

47

Iordanova, S.; Koleva, I. Optical emission spectroscopy diagnostics of inductively-driven plasmas in argon gas at low pressures. Spectroc. Acta Pt. B-Atom. Spectr. 2007, 62, 344–356.

48

Sugimoto, I.; Nakano, S.; Kuwano, H. Enhanced saturation of sputtered amorphous SiN film frameworks using He- and Ne-Penning effects. J. Appl. Phys. 1994, 75, 7710–7717.

49

Naveed, M. A.; Qayyum, A.; Ali, S.; Zakaullah, M. Effects of helium gas mixing on the production of active species in nitrogen plasma. Phys. Lett. A 2006, 359, 499–503.

50

Aragón, C.; Aguilera, J. A. Characterization of laser induced plasmas by optical emission spectroscopy: A review of experiments and methods. Spectroc. Acta Pt. B-Atom. Spectr. 2008, 63, 893–916.

51

Qayyum, A.; Zeb, S.; Naveed, M. A.; Rehman, N. U.; Ghauri, S. A.; Zakaullah, M. Optical emission spectroscopy of Ar–N2 mixture plasma. J. Quant. Spectrosc. Radiat. Transf. 2007, 107, 361–371.

52

Tendero, C.; Tixier, C.; Tristant, P.; Desmaison, J.; Leprince, P. Atmospheric pressure plasmas: A review. Spectroc. Acta Pt. B-Atom. Spectr. 2006, 61, 2–30.

53

Logothetidis, S. Optical and electronic properties of amorphous carbon materials. Diam. Relat. Mat. 2003, 12, 141–150.

54

Dovbeshko, G. I.; Romanyuk, V. R.; Pidgirnyi, D. V.; Cherepanov, V. V.; Andreev, E. O.; Levin, V. M.; Kuzhir, P. P.; Kaplas, T.; Svirko, Y. P. Optical properties of pyrolytic carbon films versus graphite and graphene. Nanoscale Res. Lett. 2015, 10, 234.

File
12274_2017_1764_MOESM1_ESM.pdf (737.5 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 04 May 2017
Revised: 25 June 2017
Accepted: 11 July 2017
Published: 02 February 2018
Issue date: March 2018

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany 2017

Acknowledgements

Acknowledgements

This work was financially supported by the National Natural Science Foundations of China (Nos. 51331006 and 51271044).

Return