Journal Home > Volume 10 , Issue 12

Solid polymer electrolytes are light-weight, flexible, and non-flammable and provide a feasible solution to the safety issues facing lithium-ion batteries through the replacement of organic liquid electrolytes. Substantial research efforts have been devoted to achieving the next generation of solid-state polymer lithium batteries. Herein, we provide a review of the development of solid polymer electrolytes and provide comprehensive insights into emerging developments. In particular, we discuss the different molecular structures of the solid polymer matrices, including polyether, polyester, polyacrylonitrile, and polysiloxane, and their interfacial compatibility with lithium, as well as the factors that govern the properties of the polymer electrolytes. The discussion aims to give perspective to allow the strategic design of state-of-the-art solid polymer electrolytes, and we hope it will provide clear guidance for the exploration of high-performance lithium batteries.


menu
Abstract
Full text
Outline
About this article

Recent advances in solid polymer electrolytes for lithium batteries

Show Author's information Qingqing Zhang1Kai Liu2Fei Ding1( )Xingjiang Liu1
National Key Laboratory of Science and Technology on Power Sources Tianjin Institute of Power Sources Tianjin 300384 China
School of Chemical Engineering and Technology Tianjin University Tianjin 300350 China

Abstract

Solid polymer electrolytes are light-weight, flexible, and non-flammable and provide a feasible solution to the safety issues facing lithium-ion batteries through the replacement of organic liquid electrolytes. Substantial research efforts have been devoted to achieving the next generation of solid-state polymer lithium batteries. Herein, we provide a review of the development of solid polymer electrolytes and provide comprehensive insights into emerging developments. In particular, we discuss the different molecular structures of the solid polymer matrices, including polyether, polyester, polyacrylonitrile, and polysiloxane, and their interfacial compatibility with lithium, as well as the factors that govern the properties of the polymer electrolytes. The discussion aims to give perspective to allow the strategic design of state-of-the-art solid polymer electrolytes, and we hope it will provide clear guidance for the exploration of high-performance lithium batteries.

Keywords: lithium, polymer, interfaces, solid electrolyte

References(136)

1

Lin, Z.; Liu, Z. C.; Dudney, N. J.; Liang, C. D. Lithium superionic sulfide cathode for all-solid lithium-sulfur batteries. ACS Nano 2013, 7, 2829–2833.

2

Scrosati, B.; Garche, J. Lithium batteries: Status, prospects and future. J. Power Sources 2010, 195, 2419–2430.

3

Ellis, B. L.; Lee, K. T.; Nazar, L. F. Positive electrode materials for Li-ion and Li-batteries. Chem. Mater. 2010, 22, 691–714.

4

Hernández-Burgos, K.; Rodríguez-Calero, G. G.; Zhou, W. D.; Burkhardt, S. E.; Abruña, H. D. Increasing the gravimetric energy density of organic based secondary battery cathodes using small radius cations (Li+ and Mg2+). J. Am. Chem. Soc. 2013, 135, 14532–14535.

5

Etacheri, V.; Marom, R.; Elazari, R.; Salitra, G.; Aurbach, D. Challenges in the development of advanced Li-ion batteries: A review. Energy Environ. Sci. 2011, 4, 3243–3262.

6

Janek, J.; Zeier, W. G. A solid future for battery development. Nat. Energy 2016, 1, 16141.

7

Ji, X. L.; Lee, K. T.; Nazar, L. F. A highly ordered nano­structured carbon–sulphur cathode for lithium–sulphur batteries. Nat. Mater. 2009, 8, 500–506.

8

Grande, L.; Paillard, E.; Hassoun, J.; Park, J. B.; Lee, Y. J.; Sun, Y. K.; Passerini, S.; Scrosati, B. The lithium/air battery: Still an emerging system or a practical reality? Adv. Mater. 2015, 27, 784–830.

9

Tarascon, J. M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359–367.

10

Xu, W.; Wang, J. L.; Ding, F.; Chen. X. L.; Nasybulin, E.; Zhang, Y. H.; Zhang. J. G. Lithium metal anodes for rechargeable batteries. Energy Environ. Sci. 2014, 7, 513–537.

11

Li, Z.; Huang, J.; Yann Liaw, B.; Metzler, V.; Zhang, J. B. A review of lithium deposition in lithium-ion and lithium metal secondary batteries. J. Power Sources 2014, 254, 168–182.

12

Xu, K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem. Rev. 2004, 104, 4303–4418.

13

Aurbach, D.; Zinigrad, E.; Cohen, Y.; Teller, H. A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions. Solid State Ionics 2002, 148, 405–416.

14

Murata, K. An overview of the research and development of solid polymer electrolyte batteries. Electrochim. Acta 1995, 40, 2177–2184.

15

Shimonishi, Y.; Zhang, T.; Imanishi, N.; Im, D.; Lee, D. J.; Hirano, A.; Takeda, Y.; Yamamoto, O.; Sammes, N. A. Study on lithium/air secondary batteries-stability of the NASICON- type lithium ion conducting solid electrolyte in alkaline aqueous solutions. J. Power Sources 2011, 196, 5128–5132.

16

Murugan, R.; Thangadurai, V.; Weppner, W. Fast lithium ion conduction in garnet-type Li7La3Zr2O12. Angew. Chem., Int. Ed. 2007, 46, 7778–7781.

17

Stramare, S.; Thangadurai, V.; Weppner, W. Lithium lanthanum titanates: A review. Chem. Mater. 2003, 15, 3974–3990.

18

Kamaya, N.; Homma, K.; Yamakawa, Y.; Hirayama, M.; Kanno, R.; Yonemura, M.; Kamiyama, T.; Kato, Y.; Hama, S.; Kawamoto, K. et al. A lithium superionic conductor. Nat. Mater. 2011, 10, 682–686.

19

Mizuno, F.; Hayashi, A.; Tadanaga, K.; Tatsumisago, M. New, highly ion-conductive crystals precipitated from Li2S-P2S5 glasses. Adv. Mater. 2005, 17, 918–921.

20

Kim, J. G.; Son, B.; Mukherjee, S.; Schuppert, N.; Bates, A.; Kwon, O.; Choi, M. J.; Chung, H. Y.; Park, S. A review of lithium and non-lithium based solid state batteries. J. Power Sources 2015, 282, 299–322.

21

MacGlashan, G. S.; Andreev, Y. G.; Bruce, P. G. Structure of the polymer electrolyte poly(ethylene oxide)6: LiAsF6. Nature 1999, 398, 792–794.

22

Ratner, M. A.; Johansson, P.; Shriver, D. F. Polymer electrolytes: Ionic transport mechanisms and relaxation coupling. MRS Bull. 2000, 25, 31–37.

23

Quartarone, E.; Mustarelli, P. Electrolytes for solid-state lithium rechargeable batteries: Recent advances and perspectives. Chem. Soc. Rev. 2011, 40, 2525–2540.

24

Agrawal, R. C.; Pandey, G. P. Solid polymer electrolytes: Materials designing and all-solid-state battery applications: An overview. J. Phys. D: Appl. Phys. 2008, 41, 223001.

25
Ehrenstein, G. W.; Theriault, R. P. Polymeric materials: Structure, Properties, Applications; Hanser Carl GmbH + Co: Erlangen, 2001; pp 67–78.https://doi.org/10.3139/9783446434134.fm
DOI
26

Armand, M. The history of polymer electrolytes. Solid State Ionics 1994, 69, 309–319.

27

Baril, D.; Michot, C.; Armand, M. Electrochemistry of liquids vs. solids: Polymer electrolytes. Solid State Ionics 1997, 94, 35–47.

28

Fenton, D. E.; Parker, J. M.; Wright, P. V. Complexes of alkali metal ions with poly(ethylene oxide). Polymer. 1973, 14, 589.

29

Shi, J.; Vincent, C. A. The effect of molecular weight on cation mobility in polymer electrolytes. Solid State Ionics 1993, 60, 11–17.

30

Lascaud, S.; Perrier, M.; Vallee, A.; Besner, S.; Prud'homme, J.; Armand, M. Phase-diagrams and conductivity behavior of poly(ethylene oxide)-molten salt rubbery electrolytes. Macromolecules 1994, 27, 7469–7477.

31

Dollé, M.; Sannier, L.; Beaudoin, B.; Trentin, M.; Tarascon, J. M. Live scanning electron microscope observations of dendritic growth in lithium/polymer cells. Electrochem. Solid-State Lett. 2002, 5, A286–A289.

32

Rosso, M.; Brissot, C.; Teyssot, A.; Dollé, M.; Sannier, L.; Tarascon, J. M.; Bouchet, R.; Lascaud, S. Dendrite short- circuit and fuse effect on Li/polymer/Li cells. Electrochim. Acta 2006, 51, 5334–5340.

33

Croce, F.; Appetecchi, G. B.; Persi, L.; Scrosati, B. Nano- composite polymer electrolytes for lithium batteries. Nature 1998, 394, 456–458.

34

Yang, X. Q.; Lee, H. S.; Hanson, L.; McBreen, J.; Okamoto, Y. Development of a new plasticizer for poly(ethylene oxide)-based polymer electrolyte and the investigation of their ion-pair dissociation effect. J. Power Sources 1995, 54, 198–204.

35

Lago, N.; Garcia-Calvo, O.; Lopez del Amo, J. M.; Rojo, T.; Armand, M. All-solid-state lithium-ion batteries with grafted ceramic nanoparticles dispersed in solid polymer electrolytes. ChemSusChem 2015, 8, 3039–3043.

36

Manuel Stephan, A.; Nahm, K. S. Review on composite polymer electrolytes for lithium batteries. Polymer 2006, 47, 5952–5964.

37

Do, N. S. T.; Schaetzl, D. M.; Dey, B.; Seabaugh, A. C.; Fullerton-Shirey, S. K. Influence of Fe2O3 nanofiller shape on the conductivity and thermal properties of solid polymer electrolytes: Nanorods versus nanospheres. J. Phys. Chem. C 2012, 116, 21216–21223.

38

Tominaga, Y.; Yamazaki, K. Fast Li-ion conduction in poly(ethylenecarbonate)-based electrolytes and composites filled with TiO2 nanoparticles. Chem. Commun. 2014, 50, 4448–4450.

39

Fu, K.; Gong, Y. H.; Dai, J. Q.; Gong, A.; Han, X. G.; Yao, Y. G.; Wang, C. W.; Wang, Y. B.; Chen, Y. N.; Yan, C. Y. et al. Flexible, solid-State, ion-conducting membrane with 3D garnet nanofiber networks for lithium batteries. Proc. Natl. Acad. Sci. USA 2016, 113, 7094–7099.

40

Lin, D. C.; Liu, W.; Liu, Y. Y.; Lee, H. R.; Hsu, P. C.; Liu, K.; Cui, Y. High ionic conductivity of composite solid polymer electrolyte via in situ synthesis of monodispersed SiO2 nanospheres in poly(ethylene oxide). Nano Lett. 2016, 16, 459–465.

41

Jung, Y. C.; Lee, S. M.; Choi, J. H.; Jang, S. S.; Kim, D. W. All solid-state lithium batteries assembled with hybrid solid electrolytes. J. Electrochem. Soc. 2015, 162, A704–A710.

42

Tan, R.; Gao, R. T.; Zhao, Y.; Zhang, M. J.; Xu, J. Y.; Yang, J. L.; Pan F. Novel organic-inorganic hybrid electrolyte to enable LiFePO4 quasi-solid-state Li-ion batteries performed highly around room temperature. ACS Appl. Mater. Interfaces 2016, 8, 31273–31280.

43

Capuano, F.; Croce, F.; Scrosati, B. Composite polymer electrolytes. J. Electrochem. Soc. 1991, 138, 1918–1922.

44
Gang, W.; Roos, J.; Brinkmann, D.; Capuano, F.; Croce, F.; Scrosati, B. Comparison of NMR and conductivity in (PEP)8LiClO4+γ-LiAlO2. Solid State Ionics 1992, 53–56, 1102–1105.https://doi.org/10.1016/0167-2738(92)90297-3
DOI
45

Appetecchi, G. B.; Scaccia, S.; Passerini, S. Investigation on the stability of the lithium-polymer electrolyte interface. J. Electrochem. Soc. 2000, 147, 4448–4452.

46
Appetecchi, G. B.; Alessandrini, F.; Carewska, M.; Caruso, T.; Prosini, P. P.; Scaccia, S.; Passerini, S. Investigation on lithium-polymer electrolyte batteries. J. Power Sources 2001, 97–98, 790–794.https://doi.org/10.1016/S0378-7753(01)00609-7
DOI
47

Hu, L. F.; Tang, Z. L.; Zhang, Z. T. New composite polymer electrolyte comprising mesoporous lithium aluminate nanosheets and PEO/LiClO4. J. Power Sources 2007, 166, 226–232.

48

Kumar, J.; Rodrigues, S. J.; Kumar, B. Interface-mediated electrochemical effects in lithium/polymer-ceramic cells. J. Power Sources 2001, 195, 327–334.

49

Kim, Y. W.; Lee, W.; Choi, B. K. Relation between glass transition and melting of PEO–salt complexes. Electrochim. Acta 2000, 45, 1473–1477.

50
Capiglia, C.; Yang, J.; Imanishi, N.; Hirano, A.; Takeda, Y.; Yamamoto, O. Composite polymer electrolyte: The role of filler grain size. Solid State Ionics 2002, 154–155, 7–14.https://doi.org/10.1016/S0167-2738(02)00448-4
DOI
51
Itoh, T.; Miyamura, Y.; Ichikawa, Y.; Uno, T.; Kubo, M.; Yamamoto, O. Composite polymer electrolytes of poly(ethylene oxide)/BaTiO3/Li salt with hyperbranched polymer. J. Power Sources, 2003, 119–121, 403–408.https://doi.org/10.1016/S0378-7753(03)00261-1
DOI
52

Ito, Y.; Kawakubo, M.; Ueno, M.; Okuma, H.; Si, Q.; Kobayashi, T.; Hanai, K.; Imanishi, N.; Hirano, A.; Phillipps, M. B. et al. Carbon anodes for solid polymer electrolyte lithium-ion batteries. J. Power Sources 2012, 214, 84–90.

53

Yuan, M. Y.; Erdman, J.; Tang, C. Y.; Ardebili, H. High performance solid polymer electrolyte with graphene oxide nanosheets. RSC Adv. 2014, 4, 59637–59642.

54

Shim, J.; Kim, D. G.; Kim, H. J.; Lee, J. H.; Baik, J. H.; Lee, J. C. Novel composite polymer electrolytes containing poly(ethylene glycol)-grafted graphene oxide for all-solid- state lithium-ion battery applications. J. Mater. Chem. A 2014, 2, 13873–13883.

55

Ye, Y. S.; Wang, H.; Bi, S. G.; Xue, Y.; Xue, Z. G.; Zhou, X. P.; Xie, X. L.; Mai, Y. W. High performance composite polymer electrolytes using polymeric ionic liquid-functionalized graphene molecular brushes. J. Mater. Chem. A 2015, 3, 18064–18073.

56

Du, M. L.; Guo, B. C.; Jia, D. M. Newly emerging applications of halloysite nanotubes: A review. Polym. Int. 2010, 59, 574–582.

57

Lin, Y.; Wang, X. M.; Liu, J.; Miller, J. D. Natural halloysite nano-clay electrolyte for advanced all-solid-state lithium-sulfur batteries. Nano Energy 2017, 31, 478–485.

58

Cui, M. Q.; Lee, P. S. Solid polymer electrolyte with high ionic conductivity via layer-by-layer deposition. Chem. Mater. 2016, 28, 2934–2940.

59

Pan, Q. W.; Smith, D. M.; Qi, H.; Wang, S. J.; Li, C. Y. Hybrid electrolytes with controlled network structures for lithium metal batteries. Adv. Mater. 2015, 27, 5995–6001.

60

Zhang, C.; Lin, Y.; Liu, J. Sulfur double locked by a macro-structural cathode and a solid polymer electrolyte for lithium-sulfur batteries. J. Mater. Chem. A 2015, 3, 10760– 10766.

61

Kumar, R. S.; Raja, M.; Kulandainathan, M. A.; Stephan, A. M. Metal organic framework-laden composite polymer electrolytes for efficient and durable all-solid-state-lithium batteries. RSC Adv. 2014, 4, 26171–26175.

62

Devaux, D.; Glé, D.; Phan, T. T.; Gigmes, D.; Giroud, E.; Deschamps, M.; Denoyel, R.; Bouchet R. Optimization of block copolymer electrolytes for lithium metal batteries. Chem. Mater. 2015, 27, 4682–4692.

63

Zardalidis, G.; Ioannou, E. F.; Gatsouli, K. D.; Pispas, S.; Kamitsos, E. I.; Floudas, G. Ionic conductivity and self- assembly in poly(isoprene-b-ethylene oxide) electrolytes doped with LiTf and EMITf. Macromolecules 2015, 48, 1473–1482.

64

Porcarelli, L.; Gerbaldi, C.; Bella F.; Nair, J. R. Super soft all-ethylene oxide polymer electrolyte for safe all-solid lithium batteries. Sci. Rep. 2016, 6, 19892.

65

Sadoway, D. R. Block and graft copolymer electrolytes for high-performance, solid-state, lithium batteries. J. Power Sources 2004, 129, 1–3.

66

Kurian, M.; Galvin, M. E.; Trapa, P. E.; Sadoway, D. R.; Mayes, A. M. Single-ion conducting polymer–silicate nano­composite electrolytes for lithium battery applications. Electrochim. Acta 2005, 50, 2125–2134.

67

Benrabah, D.; Sylla, S.; Alloin, F.; Sanchez, J. Y.; Armand, M. Perfluorosulfonate-polyether based single ion conductors. Electrochim. Acta 1995, 40, 2259–2264.

68

Shi, Q. R.; Xue, L. X.; Qin, D. J.; Du, B.; Wang, J.; Chen, L. Q. Single ion solid-state composite electrolytes with high electrochemical stability based on a poly(perfluoroalkylsul­fonyl)-imide ionene polymer. J. Mater. Chem. A 2014, 2, 15952–15957.

69

Ma, Q.; Zhang, H.; Zhou, C. W.; Zheng, L. P.; Cheng, P. F.; Nie, J.; Feng, W. F.; Hu, Y. S.; Li, H.; Huang, X. J. et al. Single Lithium-ion conducting polymer electrolytes based on a super-delocalized polyanion. Angew. Chem., Int. Ed. 2016, 55, 2521–2525.

70

Aravindan, V.; Vickraman, P.; Sivashanmugam, A.; Thirunakaran, R.; Gopukumar, S. Comparison among the performance of LiBOB, LiDFOB and LiFAP impregnated polyvinylidenefluoride-hexafluoropropylene nanocomposite membranes by phase inversion for lithium batteries. Curr. Appl. Phys. 2013, 13, 293–297.

71

Ue, M.; Takeda, M.; Takehara, M.; Mori, S. Electrochemical properties of quaternary ammonium salts for electrochemical capacitors. J. Electrochem. Soc. 1997, 144, 2684–2688.

72

Ue, M.; Murakami, A.; Nakamura, S. Anodic stability of several anions examined by ab initio molecular orbital and density functional theories. J. Electrochem. Soc. 2002, 149, A1572–A1577.

73

Dominey, L. A.; Koch, V. R.; Blakley, T. J. Thermally stable lithium salts for polymer electrolytes. Electrochim. Acta 1992, 37, 1551–1554.

74

Ma, Q.; Qi, X. G.; Tong, B.; Zheng, Y. H.; Feng, W. F.; Nie, J.; Hu, Y. S.; Li, H.; Huang, X. J.; Chen, L. Q. et al. Novel Li[(CF3SO2)(n-C4F9SO2)N]-based polymer electrolytes for solid-state lithium batteries with superior electrochemical performance. ACS Appl. Mater. Interfaces 2016, 8, 29705– 29712.

75

Chakrabarti, A.; Filler, R.; Mandal, B. K. Synthesis and properties of a new class of fluorine-containing dilithium salts for lithium-ion batteries. Solid State Ionics 2010, 180, 1640–1645.

76

Elmér, A. M.; Jannasch, P. Synthesis and characterization of poly(ethylene oxide-co-ethylene carbonate) macromonomers and their use in the preparation of crosslinked polymer electrolytes. J. Polym. Sci. Pol. Chem. 2006, 44, 2195–2205.

77

Kwon, S. J.; Kim, D. G.; Shim, J.; Lee, J. H.; Baik, J. H.; Lee, J. C. Preparation of organic/inorganic hybrid semi- interpenetrating network polymer electrolytes based on poly(ethylene oxide-co-ethylene carbonate) for all-solid-state lithium batteries at elevated temperatures. Polymer 2014, 55, 2799–2808.

78

Inoue, S.; Koinuma, H.; Tsuruta, T. Copolymerization of carbon dioxide and epoxide. J. Polym. Sci., Part B: Polym. Lett. 1969, 7, 287–292.

79

Okumura, T.; Nishimura, S. Lithium ion conductive properties of aliphatic polycarbonate. Solid State Ionics 2014, 267, 68–73.

80

Tominaga, Y.; Yamazaki, K.; Nanthana, V. Effect of anions on lithium ion conduction in poly(ethylene carbonate)-based polymer electrolytes. J. Electrochem. Soc. 2015, 162, A3133– A3136.

81

Kimura, K.; Yajima, M.; Tominaga, Y. C. A highly- concentrated poly(ethylene carbonate)-based electrolyte for all-solid-state Li battery working at room temperature. Electrochem. Commun. 2016, 66, 46–48.

82

Fonseca, C. P.; Rosa, D. S.; Gaboardi, F.; Neves, S. Development of a biodegradable polymer electrolyte for rechargeable batteries. J. Power Sources 2006, 155, 381–384.

83

Fonseca, C. P.; Neves S. Electrochemical properties of a biodegradable polymer electrolyte applied to a rechargeable lithium battery. J. Power Sources 2006, 159, 712–716.

84

Smith, M. J.; Silva, M. M.; Cerqueira, S.; MacCallum, J. R. Preparation and characterization of a lithium ion conducting electrolyte based on poly(trimethylene carbonate). Solid State Ionics 2001, 140, 345–351.

85

Silva, M. M.; Barros, S. C.; Smith, M. J.; MacCallum, J. R. Study of novel lithium salt-based, plasticized polymer electrolytes. J. Power Sources 2002, 111, 52–57.

86
MacCallum, J. R.; Silva, M. M.; Barros, S. C.; Smith, M. J.; Fernandes, E. Advanced batteries and supercapacitors. In The Electrochemical Society Proceedings Series. Nazri, G.; Koetz, R.; Scrosati, B.; Moro, P. A.; Takeuchi, E. S., Eds.; ECS Proceedings: Scotland, 2003; pp 476.
87

Zhang, S. S.; Xu, K.; Jow, T. R. Study of LiBF4 as an electrolyte salt for a Li-ion battery. J. Electrochem. Soc. 2002, 149, A586–A590.

88

Silva, M. M.; Barros, S. C.; Smith, M. J.; MacCallum, J. R. Characterization of solid polymer electrolytes based on poly(trimethylenecarbonate) and lithium tetrafluoroborate. Electrochim. Acta 2004, 49, 1887–1891.

89

Silva, M. M.; Barbosa, P.; Evans, A.; Smith, M. J. Novel solid polymer electrolytes based on poly(trimethylene carbonate) and lithium hexafluoroantimonate. Solid State Sci. 2006, 8, 1318–1321.

90

Barbosa, P. C.; Rodrigues, L. C.; Silva, M. M.; Smith, M. J. Characterization of pTMCnLiPF6 solid polymer electrolytes. Solid State Ionics 2011, 193, 39–42.

91

Sun, B.; Mindemark, J.; Edström, K.; Brandell, D. Polycarbonate-based solid polymer electrolytes for Li-ion batteries. Solid State Ionics 2014, 262, 738–742.

92

Abraham, D. P.; Reynolds, E. M.; Schultz, P. L.; Jansen, A. N.; Dees, D. W. Temperature dependence of capacity and impedance data from fresh and aged high-power lithium-ion cells. J. Electrochem. Soc. 2006, 153, A1610–A1616.

93

Lee, Y. G.; Cho, J. 3-Chloroanisole for overcharge protection of a Li-ion cell. Electrochim. Acta 2007, 52, 7404–7408.

94

Sun, B.; Mindemark, J.; Edström, K.; Brandell, D. Realization of high performance polycarbonate-based Li polymer batteries. Electrochem. Commun. 2015, 52, 71–74.

95

Mindemark, J.; Sun, B.; Törmä, E.; Brandell, D. High- performance solid polymer electrolytes for lithium batteries operational at ambient temperature. J. Power Sources 2015, 298, 166–170.

96

Mindemark, J.; Törmä, E.; Sun, B.; Brandell, D. Copolymers of trimethylene carbonate and ε-caprolactone as electrolytes for lithium-ion batteries. Polymer 2015, 63, 91–98.

97

Yu, X. Y.; Xiao, M.; Wang, S. J.; Zhao, Q. Q.; Meng, Y. Z. Fabrication and characterization of PEO/PPC polymer electrolyte for lithium-ion battery. J. Appl. Polym. Sci. 2010, 115, 2718–2722.

98

Zhou, D.; Zhou, R.; Chen, C. X.; Yee, W. A.; Kong, J. H.; Ding, G. Q.; Lu X. H. Non-volatile polymer electrolyte based on poly(propylene carbonate), ionic liquid, and lithium perchlorate for electrochromic devices. J. Phys. Chem. B 2013, 117, 7783–7789.

99

Zhang, J. J.; Zhao, J. H.; Yue, L. P.; Wang, Q. F.; Chai, J. C.; Liu, Z. H.; Zhou, X. H.; Li, H.; Guo, Y. G.; Cui, G. L. et al. Safety-reinforced poly(propylene carbonate)-based all-solid- state polymer electrolyte for ambient-temperature solid polymer lithium batteries. Adv. Energy Mater. 2015, 5, 1501082.

100

Zhang, J. J.; Zang, X.; Wen, H. J.; Dong, T. T.; Chai, J. C.; Li, Y.; Chen, B. B.; Zhao, J. W.; Dong, S. M.; Ma, J. et al. High-voltage and free-standing poly(propylene carbonate)/ Li6.75La3Zr1.75Ta0.25O12 composite solid electrolyte for wide temperature range and flexible solid lithium ion battery. J. Mater. Chem. A. 2017, 5, 4940–4948.

101

Deng, K. R.; Wang, S. J.; Ren, S.; Han, D. M.; Xiao, M.; Meng, Y. Z. A Novel single-ion-conducting polymer elec­trolyte derived from CO2-based multifunctional polycarbonate. ACS Appl. Mater. Interfaces 2016, 8, 33642–33648.

102

Chen, R. J.; Liu, F.; Chen, Y.; Ye, Y. S.; Huang, Y. X.; Wu, F.; Li, L. An investigation of functionalized electrolyte using succinonitrile additive for high voltage lithium-ion batteries. J. Power Sources 2016, 306, 70–77.

103

Alarco, P. J.; Abu-lebdeh, Y.; Abouimrane, A.; Armand, M. The plastic-crystalline phase of succinonitrile as a universal matrix for solid-state ionic conductors. Nat. Mater. 2004, 3, 476–481.

104

Ha, H. J.; Kwon, Y. H.; Kim, J. Y.; Lee S. Y. A self- standing, UV-cured polymer networks-reinforced plastic crystal composite Electrolyte for a lithium-ion battery. Electrochim. Acta 2011, 57, 40–45.

105

Choi, K. H.; Kim, S. H.; Ha, H. J.; Kil, E. H.; Lee, C. K.; Lee, S. B.; Shim, J. K.; Lee, S. Y. Compliant polymer network-mediated fabrication of a bendable plastic crystal polymer electrolyte for flexible lithium-ion batteries. J. Mater. Chem. A 2013, 1, 5224–5231.

106

Choi, K. H.; Cho, S. J.; Kim, S. H.; Kwon, Y. H.; Kim, J. Y.; Lee, S. Y. Thin, deformable, and safety-reinforced plastic crystal polymer electrolytes for high-performance flexible lithium-ion batteries. Adv. Funct. Mater. 2014, 24, 44–52.

107

Kim, S. H.; Choi, K. H.; Cho, S. J.; Park, J. S.; Cho, K. Y.; Lee, C. K.; Lee, S. B.; Shim, J. K.; Lee, S. Y. A shape- deformable and thermally stable solid-state electrolyte based on a plastic crystal composite polymer electrolyte for flexible/safer lithium-ion batteries. J. Mater. Chem. A 2014, 2, 10854–10861.

108

Liu, K.; Ding, F.; Liu, J. Q.; Zhang, Q. Q.; Liu, X. J.; Zhang, J. L.; Xu, Q. A Cross-linking succinonitrile-based composite polymer electrolyte with uniformly dispersed vinyl-functionalized SiO2 particles for Li-ion batteries. ACS Appl. Mater. Interfaces 2016, 8, 23668–23675.

109

Liu, K.; Ding, F.; Lu, Q. W.; Liu, J. Q.; Zhang, Q. Q.; Liu, X. J.; Xu, Q. A novel plastic crystal composite polymer electrolyte with excellent mechanical bendability and electrochemical performance for flexible lithium-ion batteries. Solid State Ionics 2016, 289, 1–8.

110

Rahman, M. Y. A.; Ahmad, A.; Ismail, L. H. C.; Salleh, M. M. Fabrication and characterization of a solid polymeric electrolyte of PAN-TiO2-LiClO4. J. Appl. Polym. Sci. 2010, 115, 2144–2148.

111

Wang, Z. X.; Hu, Y. S.; Chen, L. Q. Some studies on electrolytes for lithium ion batteries. J. Power Sources 2005, 146, 51–57.

112

Chen-Yang, Y. W.; Chen, H. C.; Lin, F. J.; Chen, C. C. Polyacrylonitrile electrolytes: 1. A novel high-conductivity composite polymer electrolyte based on PAN, LiClO4 and α-Al2O3. Solid State Ionics 2002, 150, 327–335.

113

Chen, Y. T.; Chuang, Y. C.; Su, J. H.; Yu, H. C.; Chen- Yang, Y. W. High discharge capacity solid composite polymer electrolyte lithium battery. J. Power Sources 2011, 196, 2802–2809.

114

Ramesh, S.; Ng, H. M. An investigation on PAN-PVC- LiTFSI based polymer electrolytes system. Solid State Ionics 2011, 192, 2–5.

115

Zhou, D.; He, Y. B.; Liu, R. L.; Liu, M.; Du, H. D.; Li, B. H.; Cai, Q.; Yang, Q. H.; Kang, F. Y. In situ synthesis of a hierarchical all-solid-state electrolyte based on nitrile materials for high-performance lithium-ion batteries. Adv. Energy Mater. 2015, 5, 1500353.

116

Nagaoka, K.; Naruse, H.; Shinohara, I.; Watanabe, M. High ionic conductivity in poly(dimethyl siloxane-co-ethylene oxide) dissolving lithium perchlorate. J. Polym. Sci. Polym. Lett. Ed. 1984, 22, 659–663.

117

Fish, D.; Khan, I. M.; Smid, J. Conductivity of solid complexes of lithium perchlorate with poly{[ω- methoxyhexa(oxyethylene)ethoxy]methylsiloxane}. Makromol. Chem. Rapid Commun. 1986, 7, 115–120.

118

Li, J.; Lin, Y.; Yao, H. H.; Yuan, C. F.; Liu J. Tuning thin-film electrolyte for lithium battery by grafting cyclic carbonate and combed poly(ethylene oxide) on polysiloxane. ChemSusChem 2014, 7, 1901–1908.

119

Boaretto, N.; Bittner, A.; Brinkmann, C.; Olsowski, B. E.; Schulz, J.; Seyfried, M.; Vezzù, K.; Popall, M.; Di Noto, V. Highly conducting 3D-hybrid polymer electrolytes for lithium batteries based on siloxane networks and cross- linked organic polar interphases. Chem. Mater. 2014, 26, 6339–6350.

120

Han, P. F.; Zhu, Y. W.; Liu, J. An all-solid-state lithium ion battery electrolyte membrane fabricated by hot-pressing method. J. Power Sources 2015, 284, 459–465.

121

Lin, Y.; Li, J.; Liu, K.; Liu, Y. X.; Liu J.; Wang, X. M. Unique starch polymer electrolyte for high capacity all- solid-state lithium sulfur battery. Green Chem. 2016, 18, 3796–3803.

122

Noor, I. S.; Majid, S. R.; Arof, A. K. Poly(vinyl alcohol)–LiBOB complexes for lithium-air cells. Electrochim. Acta 2013, 102, 149–160.

123

Luther, T. A.; Stewart, F. F.; Budzien, J. L.; LaViolette, R. A. Bauer, W. F.; Harrup, M. K.; Allen C. W.; Elayan, A. On the mechanism of ion transport through polyphosphazene solid polymer electrolytes:   NMR, IR, and Raman spec­troscopic studies and computational analysis of 15N-labeled polyphosphazenes. J. Phys. Chem. B 2003, 107, 3168–3176.

124
Blonsky, P. M.; Shriver, D. F.; Austin, P.; Allcock, H. R. Complex formation and ionic conductivity of polyphosphazene solid electrolytes. Solid State Ionics 1986, 18–19, 258–264.https://doi.org/10.1016/0167-2738(86)90123-2
DOI
125

Yi, J.; Zhou, H. S. A unique hybrid quasi-solid-state electrolyte for Li–O2 batteries with improved cycle life and safety. ChemSusChem 2016, 9, 2391–2396.

126

Liu, W.; Liu, N.; Sun, J.; Hsu, P. C.; Li, Y. Z.; Lee, H. W.; Cui Y. Ionic conductivity enhancement of polymer electrolytes with ceramic nanowire fillers. Nano Lett. 2015, 15, 2740–2745.

127

Zhao, Y. R.; Wu, C.; Peng, G.; Chen, X. T.; Yao, X. Y.; Bai, Y.; Wu, F.; Chen, S. J.; Xu X. X. A new solid polymer electrolyte incorporating Li10GeP2S12 into a polyethylene oxide matrix for all-solid-state lithium batteries. J. Power Sources 2016, 301, 47–53.

128

Peled, E.; Golodnitsky, D.; Ardel, G.; Eshkenazy, V. The SEI model-application to lithium-polymer electrolyte batteries. Electrochim. Acta 1995, 40, 2197–2204.

129

Peled, E.; Golodnitsky, D.; Ardel, G. Advanced model for solid electrolyte interphase electrodes in liquid and polymer electrolytes. J. Electrochem. Soc. 1997, 144, L208–L210.

130

Le Granvalet-Mancini, M.; Hanrath, T.; Teeters, D. Characterization of the passivation layer at the polymer electrolyte/lithium electrode interface. Solid State Ionics 2000, 135, 283–290.

131

Ismail, I.; Noda, A.; Nishimoto, A.; Watanabe, M. XPS study of lithium surface after contact with lithium-salt doped polymer electrolytes. Electrochim. Acta 2001, 46, 1595–1603.

132

Xu, C.; Sun, B.; Gustafsson, T.; Edström, K.; Brandell D.; Hahlin, M. Interface layer formation in solid polymer electrolyte lithium batteries: An XPS study. J. Mater. Chem. A 2014, 2, 7256–7264.

133

Sun, B.; Xu, C.; Mindemark, J.; Gustafsson, T.; Edström, K.; Brandell, D. At the polymer electrolyte interfaces: The role of the polymer host in interphase layer formation in Li-batteries. J. Mater. Chem. A 2015, 3, 13994–14000.

134

Li, Q.; Sun, H. Y.; Takeda, Y.; Imanishi, N.; Yang, J.; Yamamoto, O. Interface properties between a lithium metal electrode and a poly(ethylene oxide) based composite polymer electrolyte. J. Power Sources 2001, 94, 201–205.

135

Bouchet, R.; Lascaud, S.; Rosso, M. An EIS study of the anode Li/PEO-LiTFSI of a Li polymer battery. J. Electrochem. Soc. 2003, 150, A1385–A1389.

136

Wang, C. H.; Yang, Y. F.; Liu, X. J.; Zhong, H.; Xu, H.; Xu, Z. B.; Shao, H. X.; Ding, F. Suppression of lithium dendrite formation by using LAGP-PEO (LiTFSI) composite solid electrolyte and lithium metal anode modified by PEO (LiTFSI) in all-solid-state lithium batteries. ACS Appl. Mater. Interfaces 2017, 9, 13694–13702.

Publication history
Copyright
Acknowledgements

Publication history

Received: 23 April 2017
Revised: 08 July 2017
Accepted: 11 July 2017
Published: 29 August 2017
Issue date: December 2017

Copyright

© Tsinghua University Press and Springer‐Verlag GmbH Germany 2017

Acknowledgements

Acknowledgements

This work was supported by the Foundation of National Key Laboratory of Science and Technology on Power Sources of China (No. 9140C16020212-DZ2801).

Return