Journal Home > Volume 11 , Issue 3

Two-dimensional transition metal dichalcogenide semiconductors have emerged as promising candidates for optoelectronic devices with unprecedented properties and ultra-compact footprints. However, the high sensitivity of atomically thin materials to the surrounding dielectric media imposes severe limitations on their practical applicability. Hence, to enable the effective integration of these materials in devices, the development of reliable encapsulation procedures that preserve their physical properties is required. Here, the excitonic photoluminescence (at room temperature and 10 K) is assessed on mechanically exfoliated WSe2 monolayer flakes encapsulated with SiOx and AlxOy layers by means of chemical and physical deposition techniques. Conformal coating on untreated and non-functionalized flakes is successfully achieved by all the techniques examined, with the exception of atomic layer deposition, for which a cluster-like oxide coating is formed. No significant compositional or strain state changes in the flakes are detected upon encapsulation, independently of the technique adopted. Remarkably, our results show that the optical emission of the flakes is strongly influenced by the stoichiometry quality of the encapsulating oxide. When the encapsulation is carried out with slightly sub-stoichiometric oxides, two remarkable phenomena are observed. First, dominant trion (charged exciton) photoluminescence is detected at room temperature, revealing a clear electrical doping of the monolayers. Second, a strong decrease in the optical emission of the monolayers is observed, and attributed to non-radiative recombination processes and/or carrier transfer from the flake to the oxide. Power- and temperature-dependent photoluminescence measurements further confirm that stoichiometric oxides obtained by physical deposition lead to a successful encapsulation, opening a promising route for the development of integrated two-dimensional devices.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Effects of dielectric stoichiometry on the photoluminescence properties of encapsulated WSe2 monolayers

Show Author's information Javier Martín-Sánchez1( )Antonio Mariscal2Marta De Luca3Aitana Tarazaga Martín-Luengo1Georg Gramse4Alma Halilovic1Rosalía Serna2Alberta Bonanni1Ilaria Zardo3Rinaldo Trotta1( )Armando Rastelli1
Institute of Semiconductor and Solid State PhysicsJohannes Kepler University LinzAltenbergerstrasse 69, A-4040, LinzAustria
Laser Processing GroupInstituto de ópticaCSICC/Serrano 12128006Madrid, Spain
Department of PhysicsUniversity of BaselKlingelbergstrasse 824056Basel, Switzerland
Institute for BiophysicsJohannes Kepler University LinzGruberstrasse 40, A-4020, LinzAustria

Abstract

Two-dimensional transition metal dichalcogenide semiconductors have emerged as promising candidates for optoelectronic devices with unprecedented properties and ultra-compact footprints. However, the high sensitivity of atomically thin materials to the surrounding dielectric media imposes severe limitations on their practical applicability. Hence, to enable the effective integration of these materials in devices, the development of reliable encapsulation procedures that preserve their physical properties is required. Here, the excitonic photoluminescence (at room temperature and 10 K) is assessed on mechanically exfoliated WSe2 monolayer flakes encapsulated with SiOx and AlxOy layers by means of chemical and physical deposition techniques. Conformal coating on untreated and non-functionalized flakes is successfully achieved by all the techniques examined, with the exception of atomic layer deposition, for which a cluster-like oxide coating is formed. No significant compositional or strain state changes in the flakes are detected upon encapsulation, independently of the technique adopted. Remarkably, our results show that the optical emission of the flakes is strongly influenced by the stoichiometry quality of the encapsulating oxide. When the encapsulation is carried out with slightly sub-stoichiometric oxides, two remarkable phenomena are observed. First, dominant trion (charged exciton) photoluminescence is detected at room temperature, revealing a clear electrical doping of the monolayers. Second, a strong decrease in the optical emission of the monolayers is observed, and attributed to non-radiative recombination processes and/or carrier transfer from the flake to the oxide. Power- and temperature-dependent photoluminescence measurements further confirm that stoichiometric oxides obtained by physical deposition lead to a successful encapsulation, opening a promising route for the development of integrated two-dimensional devices.

Keywords: photoluminescence, semiconductors, transition metal dichalcogenides, two dimensional (2D) materials, dielectric encapsulation, WSe2

References(70)

1

Liu, W.; Kang, J. H.; Sarkar, D.; Khatami, Y.; Jena, D.; Banerjee, K. Role of metal contacts in designing highperformance monolayer n-type WSe2 field effect transistors. Nano Lett. 2013, 13, 1983–1990.

2

Xu, X. D.; Yao, W.; Xiao, D.; Heinz, T. F. Spin and pseudospins in layered transition metal dichalcogenides. Nat. Phys. 2014, 10, 343–350.

3

Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F. Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 2010, 105, 136805.

4

Kobolov, A. V.; Tominaga, J. Two-Dimensional Transition-Metal Dichalcogenides; Springer Series in Materials Science: Switzerland, 2016.

5

Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Electronics and optoelectronics of twodimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699–712.

6

He, K. L.; Kumar, N.; Zhao, L.; Wang, Z. F.; Mak, K. F.; Zhao, H.; Shan, J. Tightly bound excitons in monolayer WSe2. Phys. Rev. Lett. 2014, 113, 026803.

7

Mak, K. F.; He, K. L.; Lee, C.; Lee, G. H.; Hone, J.; Heinz, T. F.; Shan, J. Tightly bound trions in monolayer MoS2. Nat. Mater. 2013, 12, 207–211.

8

Jones, A. M.; Yu, H. Y.; Ghimire, N. J.; Wu, S. F.; Aivazian, G.; Ross, J. S.; Zhao, B.; Yan, J. Q.; Mandrus, D. G.; Xiao, D. et al. Optical generation of excitonic valley coherence in monolayer WSe2. Nat. Nanotechnol. 2013, 8, 634–638.

9

Huang, J. N.; Hoang, T. B.; Mikkelsen, M. H. Probing the origin of excitonic states in monolayer WSe2. Sci. Rep. 2016, 6, 22414.

10

You, Y. M.; Zhang, X. X.; Berkelbach, T. C.; Hybertsen, M. S.; Reichman, D. R.; Heinz, T. F. Observation of biexcitons in monolayer WSe2. Nat. Phys. 2015, 11, 477–482.

11

Arora, A.; Koperski, M.; Nogajewski, K.; Marcus, J.; Faugeras, C.; Potemski, M. Excitonic resonances in thin films of WSe2: From monolayer to bulk material. Nanoscale 2015, 7, 10421–10429.

12

Choi, J.; Zhang, H. Y.; Du, H. D.; Choi, J. H. Understanding solvent effects on the properties of two-dimensional transition metal dichalcogenides. ACS Appl. Mater. Interfaces 2016, 8, 8864–8869.

13

Tongay, S.; Zhou, J.; Ataca, C.; Liu, J.; Kang, J. S.; Matthews, T. S.; You, L.; Li, J. B.; Grossman, J. C.; Wu, J. Q. Broad-range modulation of light emission in two-dimensional semiconductors by molecular physisorption gating. Nano Lett. 2013, 13, 2831–2836.

14

Yu, Y. F.; Yu, Y. L.; Xu, C.; Cai, Y. Q.; Su, L. Q.; Zhang, Y.; Zhang, Y. W.; Gundogdu, K.; Cao, L. Y. Engineering substrate interactions for high luminescence efficiency of transitionmetal dichalcogenide monolayers. Adv. Funct. Mater. 2016, 26, 4733–4739.

15

Buscema, M.; Steele, G. A.; van der Zant, H. S. J.; Castellanos-Gomez, A. The effect of the substrate on the raman and photoluminescence emission of single-layer MoS2. Nano Res. 2014, 7, 561–571.

16

Shi, H. Y.; Yan, R. S.; Bertolazzi, S.; Brivio, J.; Gao, B.; Kis, A.; Jena, D.; Xing, H. G.; Huang, L. B. Exciton dynamics in suspended monolayer and few-layer MoS2 2D crystals. ACS Nano 2013, 7, 1072–1080.

17

Mag-isa, A. E.; Kim, J. H.; Lee, H. J.; Oh, C. S. A systematic exfoliation technique for isolating large and pristine samples of 2D materials. 2D Mater. 2015, 2, 034017.

18

Castellanos-Gomez, A.; Buscema, M.; Molenaar, R.; Singh, V.; Janssen, L.; van der Zant, H. S. J.; Steele, G. A. Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping. 2D Mater. 2014, 1, 011002.

19

Yan, T. F.; Qiao, X. F.; Liu, X. N.; Tan, P. H.; Zhang, X. H. Photoluminescence properties and exciton dynamics in monolayer WSe2. Appl. Phys. Lett. 2014, 105, 101901.

20

Chen, X. L.; Wu, Y. Y.; Wu, Z. F.; Han, Y.; Xu, S. G.; Wang, L.; Ye, W. G.; Han, T. Y.; He, Y. H.; Cai, Y. et al. High-quality sandwiched black phosphorus heterostructure and its quantum oscillations. Nat. Commun. 2015, 6, 7315.

21

Wood, J. D.; Wells, S. A.; Jariwala, D.; Chen, K. S.; Cho, E.; Sangwan, V. K.; Liu, X. L.; Lauhon, L. J.; Marks, T. J.; Hersam, M. C. Effective passivation of exfoliated black phosphorus transistors against ambient degradation. Nano Lett. 2014, 14, 6964–6970.

22

Jena, D.; Konar, A. Enhancement of carrier mobility in semiconductor nanostructures by dielectric engineering. Phys. Rev. Lett. 2007, 98, 136805.

23

Kufer, D.; Konstantatos, G. Highly sensitive, encapsulated MoS2 photodetector with gate controllable gain and speed. Nano Lett. 2015, 15, 7307–7313.

24

Park, J. H.; Fathipour, S.; Kwak, I.; Sardashti, K.; Ahles, C. F.; Wolf, S. F.; Edmonds, M.; Vishwanath, S.; Xing, H. G.; Fullerton-Shirey, S. K. et al. Atomic layer deposition of Al2O3 on WSe2 functionalized by titanyl phthalocyanine. ACS Nano 2016, 10, 6888–6896.

25

Huber, M. A.; Mooshammer, F.; Plankl, M.; Viti, L.; Sandner, F.; Kastner, L. Z.; Frank, T.; Fabian, J.; Vitiello, M. S.; Cocker, T. L. et al. Femtosecond photo-switching of interface polaritons in black phosphorus heterostructures. Nat Nanotechnol. 2016, 12, 207–211.

26

Cheng, L. X.; Qin, X. Y.; Lucero, A. T.; Azcatl, A.; Huang, J.; Wallace, R. M.; Cho, K.; Kim, J. Atomic layer deposition of a high-k dielectric on MoS2 using trimethylaluminum and ozone. ACS Appl. Mater. Interfaces 2014, 6, 11834–11838.

27

Azcatl, A.; Kc, S.; Peng, X.; Lu, N.; McDonnell, S.; Qin, X. Y.; de Dios, F.; Addou, R.; Kim, J.; Kim, M. J. et al. HfO2 on UV–O3 exposed transition metal dichalcogenides: Interfacial reactions Study. 2D Mater. 2015, 2, 014004.

28

Yang, W.; Sun, Q. Q.; Geng, Y.; Chen, L.; Zhou, P.; Ding, S. J.; Zhang, D. W. The integration of sub-10 nm gate oxide on MoS2 with ultra low leakage and enhanced mobility. Sci. Rep. 2015, 5, 11921.

29

Das, S.; Chen, H. Y.; Penumatcha, A. V.; Appenzeller, J. High performance multilayer MoS2 transistors with scandium contacts. Nano Lett. 2013, 13, 100–105.

30

Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 2011, 6, 147–150.

31

Late, D. J.; Liu, B.; Matte, H. S. S. R.; Dravid, V. P.; Rao, C. N. R. Hysteresis in single-layer MoS2 field effect transistors. ACS Nano 2012, 6, 5635–5641.

32

Chen, K.; Kiriya, D.; Hettick, M.; Tosun, M.; Ha, T. J.; Madhvapathy, S. R.; Desai, S.; Sachid, A.; Javey, A. Air stable n-doping of WSe2 by silicon nitride thin films with tunable fixed charge density. APL Mater. 2014, 2, 092504.

33

Sercombe, D.; Schwarz, S.; Del Pozo-Zamudio, O.; Liu, F.; Robinson, B. J.; Chekhovich, E. A.; Tartakovskii, I. I.; Kolosov, O.; Tartakovskii, A. I. Optical investigation of the natural electron doping in thin MoS2 films deposited on dielectric substrates. Sci. Rep. 2013, 3, 3489.

34

Plechinger, G.; Schrettenbrunner, F. X.; Eroms, J.; Weiss, D.; Schüller, C.; Korn, T. Low-temperature photoluminescence of oxide-covered single-layer MoS2. Phys. Status Solidi Rapid Res. Lett. 2012, 6, 126–128.

35

Bhanu, U.; Islam, M. R.; Tetard, L.; Khondaker, S. I. Photoluminescence quenching in gold-MoS2 hybrid nanoflakes. Sci. Rep. 2014, 4, 5575.

36

Lin, Y. X.; Ling, X.; Yu, L. L.; Huang, S. X.; Hsu, A. L.; Lee, Y. H.; Kong, J.; Dresselhaus, M. S.; Palacios, T. Dielectric screening of excitons and trions in single-layer MoS2. Nano Lett. 2014, 14, 5569–5576.

37

Eason, R. Pulsed Laser Deposition of Thin Films: Applications- Led Growth of Functional Materials; John Wiley & Sons, Inc. : Hoboken, New Jersey, 2006.

DOI
38

Toftmann, B.; Schou, J.; Hansen, T. N.; Lunney, J. G. Angular distribution of electron temperature and density in a laser-ablation plume. Phys. Rev. Lett. 2000, 84, 3998–4001.

39

Serna, R.; Nuñez-Sanchez, S.; Xu, F.; Afonso, C. N. Enhanced photoluminescence of rare-earth doped films prepared by off-axis pulsed laser deposition. Appl. Surf. Sci. 2011, 257, 5204–5207.

40

Nonnenmacher, M.; O'Boyle, M. P.; Wickramasinghe, H. K. Kelvin probe force microscopy. Appl. Phys. Lett. 1991, 58, 2921–2923.

41

Stark, R. W.; Naujoks, N.; Stemmer, A. Multifrequency electrostatic force microscopy in the repulsive regime. Nanotechnology 2007, 18, 065502.

42

Horcas, I.; Fernández, R.; Gómez-Rodríguez, J. M.; Colchero, J.; Gómez-Herrero, J.; Baro, A. M. WSXM: A software for scanning probe microscopy and a tool for nanotechnology. Rev. Sci. Instrum. 2007, 78, 013705.

43

Zhao, W. J.; Ghorannevis, Z.; Amara, K. K.; Pang, J. R.; Toh, M.; Zhang, X.; Kloc, C.; Tan, P. H.; Eda, G. Lattice dynamics in mono-and few-layer sheets of WS2 and WSe2. Nanoscale 2013, 5, 9677–9683.

44

Rice, C.; Young, R. J.; Zan, R.; Bangert, U.; Wolverson, D.; Georgiou, T.; Jalil, R.; Novoselov, K. S. Raman-scattering measurements and first-principles calculations of straininduced phonon shifts in monolayer MoS2. Phys. Rev. B 2013, 87, 081307.

45

Chakraborty, B.; Bera, A.; Muthu, D. V. S.; Bhowmick, S.; Waghmare, U. V.; Sood, A. K. Symmetry-dependent phonon renormalization in monolayer MoS2 transistor. Phys. Rev. B 2012, 85, 161403.

46

Barnes, J. P.; Beer, N.; Petford-Long, A. K.; Suárez-García, A.; Serna, R.; Hole, D.; Weyland, M.; Midgley, P. A. resputtering and morphological changes of Au nanoparticles in nanocomposites as a function of the deposition conditions of the oxide capping layer. Nanotechnology 2005, 16, 718–723.

47

Barnes, J. P.; Petford-Long, A. K.; Suárez-García, A.; Serna, R. Evidence for shallow implantation during the growth of bismuth nanocrystals by pulsed laser deposition. J. Appl. Phys. 2003, 93, 6396–6398.

48

Klein, A.; Tomm, Y.; Schlaf, R.; Pettenkofer, C.; Jaegermann, W.; Lux-Steiner, M.; Bucher, E. Photovoltaic properties of WSe2 single-crystals studied by photoelectron spectroscopy. Sol. Energy Mater. Sol. Cells 1998, 51, 181–191.

49

Stier, A. V; Wilson, N. P.; Clark, G.; Xu, X. D.; Crooker, S. A. Probing the Influence of dielectric environment on excitons in monolayer WSe2: Insight from high magnetic fields. Nano Lett. 2016, 16, 7054–7060.

50

Griscom, D. L. Defect structure of glasses: Some outstanding questions in regard to vitreous silica. J. Non. Cryst. Solids 1985, 73, 51–77.

51

Liu, D.; Clark, S. J.; Robertson, J. Oxygen vacancy levels and electron transport in Al2O3. Appl. Phys. Lett. 2010, 96, 032905.

52

Ross, J. S.; Wu, S. F.; Yu, H. Y.; Ghimire, N. J.; Jones, A. M.; Aivazian, G.; Yan, J. Q.; Mandrus, D. G.; Xiao, D.; Yao, W. et al. Electrical control of neutral and charged excitons in a monolayer semiconductor. Nat. Commun. 2013, 4, 1474.

53

Plechinger, G.; Nagler, P.; Kraus, J.; Paradiso, N.; Strunk, C.; Schü ller, C.; Korn, T. Identification of excitons, trions and biexcitons in single-layer WS2. Phys. Status Solidi Rapid Res. Lett. 2015, 9, 457–461.

54

Zhang, D. K.; Kidd, D. W.; Varga, K. Excited biexcitons in transition metal dichalcogenides. Nano Lett. 2015, 15, 7002–7005.

55

Choi, J.; Zhang, H. Y.; Choi, J. H. Modulating optoelectronic properties of two-dimensional transition metal dichalcogenide semiconductors by photoinduced charge transfer. ACS Nano 2016, 10, 1671–1680.

56

Pospischil, A.; Furchi, M. M.; Mueller, T. Solar-energy conversion and light emission in an atomic monolayer p-n diode. Nat. Nanotechnol. 2014, 9, 257–261.

57

Ross, J. S.; Klement, P.; Jones, A. M.; Ghimire, N. J.; Yan, J. Q.; Mandrus, D. G., Taniguchi, T.; Watanabe, K.; Kitamura, K.; Yao, W. et al. Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p-n junctions. Nat. Nanotechnol. 2014, 9, 268–272.

58

Fang, H.; Chuang, S.; Chang, T. C.; Takei, K.; Takahashi, T.; Javey, A. High-performance single layered WSe2 p-FETs with chemically doped contacts. Nano Lett. 2012, 12, 3788–3792.

59

Mitioglu, A. A.; Plochocka, P.; Jadczak, J. N.; Escoffier, W.; Rikken, G. L. J. A.; Kulyuk, L.; Maude, D. K. Optical manipulation of the exciton charge state in single-layer tungsten disulfide. Phys. Rev. B 2013, 88, 245403.

60

Yamamoto, M.; Nakaharai, S.; Ueno, K.; Tsukagoshi, K. Self-limiting oxides on WSe2 as controlled surface acceptors and low-resistance hole contacts. Nano Lett. 2016, 16, 2720–2727.

61

Mouri, S.; Miyauchi, Y.; Matsuda, K. Tunable photoluminescence of monolayer MoS2 via chemical doping. Nano Lett. 2013, 13, 5944–5948.

62

Lin, J. D.; Han, C.; Wang, F.; Wang, R.; Xiang, D.; Qin, S. Q.; Zhang, X. A.; Wang, L.; Zhang, H.; Wee, A. T. S. et al. Electron-doping-enhanced trion formation in monolayer molybdenum disulfide functionalized with cesium carbonate. ACS Nano 2014, 8, 5323–5329.

63

Kylänpää, I.; Komsa, H. P. Binding energies of exciton complexes in transition metal dichalcogenide monolayers and effect of dielectric environment. Phys. Rev. B 2015, 92, 205418.

64

Mayers, M. Z.; Berkelbach, T. C.; Hybertsen, M. S.; Reichman, D. R. Binding energies and spatial structures of small carrier complexes in monolayer transition-metal dichalcogenides via diffusion Monte Carlo. Phys. Rev. BCondens. Matter Mater. Phys. 2015, 92, 161404.

65

Hichri, A.; Amara, I. B.; Ayari, S.; Jaziri, S. Exciton, trion and localized exciton in monolayer tungsten disulfide. arXiv: 1609. 05634v1, 2016.

66

Wang, G.; Bouet, L.; Lagarde, D.; Vidal, M.; Balocchi, A.; Amand, T.; Marie, X.; Urbaszek, B. Valley dynamics probed through charged and neutral exciton emission in monolayer WSe2. Phys. Rev. B 2014, 90, 075413.

67

Schmidt, T.; Lischka, K.; Zulehner, W. Excitation-power dependence of the near-band-edge photoluminescence of semiconductors. Phys. Rev. B 1992, 45, 8989–8994.

68

Chiari, A.; Colocci, M.; Fermi, F.; Li, Y. H.; Querzoli, R.; Vinattieri, A.; Zhuang, W. H. Temperature dependence of the photoluminescence in GaAs-GaAlAs multiple quantum well structure. Phys. Status Solidi B 1988, 147, 421–429.

69

Martín-Sánchez, J.; Trotta, R.; Piredda, G.; Schimpf, C.; Trevisi, G.; Seravalli, L.; Frigeri, P.; Stroj, S.; Lettner, T.; Reindl, M. et al. Reversible control of in-plane elastic stress tensor in nanomembranes. Adv. Opt. Mater. 2016, 4, 682–687.

70

Trotta, R.; Martín-Sánchez, J.; Wildmann, J. S.; Piredda, G.; Reindl, M.; Schimpf, C.; Zallo, E.; Stroj, S.; Edlinger, J.; Rastelli, A. Wavelength-tunable sources of entangled photons interfaced with atomic vapours. Nat. Commun. 2016, 7, 10375.

File
12274_2017_1755_MOESM1_ESM.pdf (2.1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 26 April 2017
Revised: 25 June 2017
Accepted: 03 July 2017
Published: 02 February 2018
Issue date: March 2018

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany 2017

Acknowledgements

Acknowledgements

The authors would like to thank Georgios Katsaros and Tim Wehling for valuable discussions. Stephan Bräuer, Albin Schwarz, and Ursula Kainz are acknowledged for technical support. A. M. acknowledges the financial support through BES-2013-062593. G. G. acknowledges support from the Austrian Science Fund through project P 28018-B27. I. Z. acknowledges financial support from the Swiss National Science Foundation research grant (No. 200021_165784). This work was partially funded by the Austrian Science Fund through the projects P24471 and P26830, and by the Spanish Ministry for Economy and Competitiveness trough the project MINECO/FEDER TEC2015-69916-C2-1-R.

Return