Journal Home > Volume 10 , Issue 12

Flexible power devices play an increasingly crucial role in emerging flexible electronics. To improve the electrochemical performance of flexible power devices, novel electrode structures and new energy-storage systems should be designed. Herein, a novel flexible Li-ion hybrid capacitor (LIC) is designed based on an anode comprising Li4Ti5O12 nanoplate arrays coated on carbon textile (LTO/CT) and a cathode comprising a flexible N-doped graphene/carbon-nanotube composite (NGC) film. The LTO/CT anode is fabricated by directly growing Li4Ti5O12 nanoplates on CT with robust adhesion using a simple one-pot hydrothermal reaction. Considering the volume of a real-device flexible LIC, the NGC//LTO/CT configuration delivers high volumetric energy and power densities of 2 mWh·cm−3 and 185 mW·cm−3, respectively. Furthermore, the flexible LIC shows excellent flexibility and electrochemical stability, with extremely small capacity fluctuation under different bending states. This work demonstrates a scalable route to assemble flexible LICs as high-performance power devices.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Improved flexible Li-ion hybrid capacitors: Techniques for superior stability

Show Author's information Shengyang Dong1,2Hongsen Li1Junjun Wang1Xiaogang Zhang1( )Xiulei Ji2( )
Jiangsu Key Laboratory of Materials and Technology for Energy Conversion College of Material Science and Engineering Nanjing University of Aeronautics and AstronauticsNanjing 210016 China
Department of Chemistry Oregon State UniversityCorvallisOregon 97331-4003 USA

Abstract

Flexible power devices play an increasingly crucial role in emerging flexible electronics. To improve the electrochemical performance of flexible power devices, novel electrode structures and new energy-storage systems should be designed. Herein, a novel flexible Li-ion hybrid capacitor (LIC) is designed based on an anode comprising Li4Ti5O12 nanoplate arrays coated on carbon textile (LTO/CT) and a cathode comprising a flexible N-doped graphene/carbon-nanotube composite (NGC) film. The LTO/CT anode is fabricated by directly growing Li4Ti5O12 nanoplates on CT with robust adhesion using a simple one-pot hydrothermal reaction. Considering the volume of a real-device flexible LIC, the NGC//LTO/CT configuration delivers high volumetric energy and power densities of 2 mWh·cm−3 and 185 mW·cm−3, respectively. Furthermore, the flexible LIC shows excellent flexibility and electrochemical stability, with extremely small capacity fluctuation under different bending states. This work demonstrates a scalable route to assemble flexible LICs as high-performance power devices.

Keywords: graphene, carbon nanotube, flexible devices, Li-ion hybrid capacitors, Li4Ti5O12 nanoplates

References(37)

1

El-Kady, M. F.; Strong, V.; Dubin, S.; Kaner, R. B. Laser scribing of high-performance and flexible graphene-based electrochemical capacitors. Science 2012, 335, 1326–1330.

2

Liu, W.; Chen, Z.; Zhou, G. M.; Sun, Y. M.; Lee, H. R.; Liu, C.; Yao, H. B.; Bao, Z. N.; Cui, Y. 3D porous sponge- inspired electrode for stretchable lithium-ion batteries. Adv. Mater. 2016, 28, 3578–3583.

3

Kou, L.; Huang, T. Q.; Zheng, B. N.; Han, Y.; Zhao, X. L.; Gopalsamy, K.; Sun, H. Y.; Gao, C. Coaxial wet-spun yarn supercapacitors for high-energy density and safe wearable electronics. Nat. Commun. 2014, 5, 3754.

4

Qu, G. X.; Cheng, J. L.; Li, X. D.; Yuan, D. M.; Chen, P. N.; Chen, X. L.; Wang, B.; Peng, H. S. A fiber supercapacitor with high energy density based on hollow graphene/conducting polymer fiber electrode. Adv. Mater. 2016, 28, 3646–3652.

5

Liu, L. L.; Niu, Z. Q.; Zhang, L.; Zhou, W. Y.; Chen, X. D.; Xie, S. S. Nanostructured graphene composite papers for highly flexible and foldable supercapacitors. Adv. Mater. 2014, 26, 4855–4862.

6

Lu, X. H.; Yu, M. H.; Zhai, T.; Wang, G. M.; Xie, S. L.; Liu, T. Y.; Liang, C. L.; Tong, Y. X.; Li, Y. High energy density asymmetric quasi-solid-state supercapacitor based on porous vanadium nitride nanowire anode. Nano Lett. 2013, 13, 2628–2633.

7

Li, N.; Chen, Z. P.; Ren, W. C.; Li, F.; Cheng, H.-M. Flexible graphene-based lithium ion batteries with ultrafast charge and discharge rates. Proc. Natl. Acad. Sci. USA 2012, 109, 17360–17365.

8

Dong, S. Y.; Shen, L. F.; Li, H. S.; Pang, G.; Dou, H.; Zhang, X. G. Flexible sodium-ion pseudocapacitors based on 3D Na2Ti3O7 nanosheet arrays/carbon textiles anodes. Adv. Funct. Mater. 2016, 26, 3703–3710.

9

Lin, T. Q.; Chen, I.-W.; Liu, F. X.; Yang, C. Y.; Bi, H.; Xu, F. F.; Huang, F. Q. Nitrogen-doped mesoporous carbon of extraordinary capacitance for electrochemical energy storage. Science 2015, 350, 1508–1513.

10

Li, H. S.; Peng, L. L.; Zhu, Y.; Chen, D. H.; Zhang, X. G.; Yu, G. H. An advanced high-energy sodium ion full batterybased on nanostructured Na2Ti3O7/VOPO4 layeredmaterials. Energy Environ. Sci. 2016, 9, 3399–3405.

11

Liu, C. F.; Zhang, C. K.; Song, H. Q.; Zhang, C. P.; Liu, Y. G.; Nan, X. H.; Cao, G. Z. Mesocrystal MnO cubes as anode for Li-ion capacitors. Nano Energy 2016, 22, 290–300.

12

Wang, H. W.; Zhang, Y.; Ang, H.; Zhang, Y. Q.; Tan, H. T.; Zhang, Y. F.; Guo, Y. Y.; Franklin, J. B.; Wu, X. L.; Srinivasan, M. et al. A high-energy lithium-ion capacitor by integration of a 3D interconnected titanium carbide nanoparticle chain anode with a pyridine-derived porous nitrogen- doped carbon cathode. Adv. Funct. Mater. 2016, 26, 3082–3093.

13

Kim, H.; Cho, M. Y.; Kim, M. H.; Park, K. Y.; Gwon, H.; Lee, Y.; Roh, K. C.; Kang, K. A novel high-energy hybrid supercapacitor with an anatase TiO2-reduced graphene oxide anode and an activated carbon cathode. Adv. Energy Mater. 2013, 3, 1500–1506.

14

Choi, B. G.; Yang, M.; Hong, W. H.; Choi, J. W.; Huh, Y. S. 3D macroporous graphene frameworks for supercapacitors with high energy and power densities. ACS Nano 2012, 6, 4020–4028.

15

Liu, Z.; Xu, J.; Chen, D.; Shen, G. Z. Flexible electronics based on inorganic nanowires. Chem. Soc. Rev. 2015, 44, 161–192.

16

Liu, B.; Zhang, J.; Wang, X. F.; Chen, G.; Chen, D.; Zhou, C. W.; Shen, G. Z. Hierarchical three-dimensional ZnCo2O4 nanowire arrays/carbon cloth anodes for a novel class of high-performance flexible lithium-ion batteries. Nano Lett. 2012, 12, 3005–3011.

17

Shen, L. F.; Uchaker, E.; Zhang, X. G.; Cao, G. Z. Hydrogenated Li4Ti5O12 nanowire arrays for high rate lithium ion batteries. Adv. Mater. 2012, 24, 6502–6506.

18

Dong, S. Y.; Wang, X. Y.; Shen, L. F.; Li, H. S.; Wang, J.; Nie, P.; Wang, J. J.; Zhang, X. G. Trivalent Ti self-doped Li4Ti5O12: A high performance anode material for lithium-ion capacitors. J. Electroanal. Chem. 2015, 757, 1–7.

19

Wang, X. F.; Liu, B.; Hou, X. J.; Wang, Q. F.; Li, W. W.; Chen, D.; Shen, G. Z. Ultralong-life and high-rate web-like Li4Ti5O12 anode for high-performance flexible lithium-ion batteries. Nano Res. 2014, 7, 1073–1082.

20

Tang, Y. X.; Zhang, Y. Y.; Rui, X. H.; Qi, D. P.; Luo, Y. F.; Leow, W. R.; Chen, S.; Guo, J.; Wei, J. Q.; Li, W. L. et al. Conductive inks based on a lithium titanate nanotube gel for high-rate lithium-ion batteries with customized configuration. Adv. Mater. 2016, 28, 1567–1576.

21

Liu, J.; Liu W.; Ji, S. M.; Wan, Y. L.; Yin, H. Q.; Zhou, Y. C. Facile synthesis of carbon-encapsulated Li4Ti5O12@C hollow microspheres as superior anode materials for Li-ion batteries. Eur. J. Inorg. Chem. 2014, 2014, 2073–2079.

22

Ge, H.; Hao, T. T.; Osgood, H.; Zhang, B.; Chen, L.; Cui, L. X.; Song, X.-M.; Ogoke, O.; Wu, G. Advanced mesoporous spinel Li4Ti5O12/rGO composites with increased surface lithium storage capability for high-power lithium-ion batteries. ACS Appl. Mater. Interfaces 2016, 8, 9162–9169.

23

Shen, L. F.; Ding, B.; Nie, P.; Cao, G. Z.; Zhang, X. G. Advanced energy-storage architectures composed of spinel lithium metal oxide nanocrystal on carbon textiles. Adv. Energy Mater. 2013, 3, 1484–1489.

24

Zuo, W. H.; Yang, C.; Li, Y. Y.; Liu, J. P. Directly grown nanostructured electrodes for high volumetric energy density binder-free hybrid supercapacitors: A case study ofCNTs// Li4Ti5O12. Sci. Rep. 2015, 5, 7780.

25

Bai, W. L.; Tong, H.; Gao, Z. Z.; Yue, S. H.; Xing, S. C.; Dong, S. Y.; Shen, L. F.; He, J. P.; Zhang, X. G.; Liang, Y. Y. Preparation of ZnCo2O4nanoflowers on a 3D carbon nanotube/nitrogen-doped graphene film and its electrochemical capacitance. J. Mater. Chem. A 2015, 3, 21891–21898.

26

Tong, H.; Bai, W. L.; Yue, S. H.; Gao, Z. Z.; Lu, L.; Shen, L. F.; Dong, S. Y.; Zhu, J. J.; He, J. P.; Zhang, X. G. Zinc cobalt sulfide nanosheetsgrown on nitrogen-doped graphene/ carbon nanotube film as a high-performance electrode for supercapacitors. J. Mater. Chem. A 2016, 4, 11256–11263.

27

Yang, M.; Zhong, Y. R.; Ren, J. J.; Zhou, X. L.; Wei, J. P.; Zhou, Z. Fabrication of high-power Li-ion hybrid supercapacitors by enhancing the exterior surface charge storage. Adv. Energy Mater. 2015, 5, 1500550.

28

Li, B.; Dai, F.; Xiao, Q. F.; Yang, L.; Shen, J. M.; Zhang, C. M.; Cai, M. Activated carbon from biomass transfer for high-energy density lithium-ion supercapacitors. Adv. Energy Mater. 2016, 6, 1600802.

29

Wang, H. W.; Guan, C.; Wang, X. F.; Fan, H. J. A high energy and power Li-ion capacitor based on a TiO2 nanobelt array anode and a graphene hydrogel cathode. Small 2015, 11, 1470–1477.

30

Zhang, F.; Zhang, T. F.; Yang, X.; Zhang, L.; Leng, K.; Huang, Y.; Chen, Y. S. A high-performance supercapacitor- battery hybrid energy storage device based on graphene- enhanced electrode materials with ultrahigh energy density. Energy Environ. Sci. 2013, 6, 1623–1632.

31

Wang, Y. G.; Hong, Z. S.; Wei, M. D.; Xia, Y. Y. Layered H2Ti6O13-nanowires: A new promising pseudocapacitive material in non-aqueous electrolyte. Adv. Funct. Mater. 2012, 22, 5185–5193.

32

Wang, H. L.; Xu, Z. W.; Li, Z.; Cui, K.; Ding, J.; Kohandehghan, A.; Tan, X. H.; Zahiri, B.; Olsen, B. C.; Holt, C. M. et al. Hybrid device employing three-dimensional arrays of MnO in carbon nanosheets bridges battery– supercapacitor divide. Nano Lett. 2014, 14, 1987–1994.

33

Pech, D.; Brunet, M.; Durou, H.; Huang, P. H.; Mochalin, V.; Gogotsi, Y.; Taberna, P.-L.; Simon, P. Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon. Nat. Nanotechnol. 2010, 5, 651–654.

34

Kaempgen, M.; Chan, C. K.; Ma, J.; Cui, Y.; Gruner, G. Printable thin film supercapacitors using single-walled carbon nanotubes. Nano Lett. 2009, 9, 1872–1876.

35

Yuan, L. Y.; Lu, X. H.; Xiao, X.; Zhai, T.; Dai, J. J.; Zhang, F. C.; Hu, B.; Wang, X.; Gong, L.; Chen, J. et al. Flexible solid-state supercapacitors based on carbon nanoparticles/ MnO2 nanorods hybrid structure. ACS Nano 2012, 6, 656–661.

36

Xiao, X.; Ding, T. P.; Yuan, L. Y.; Shen, Y. Q.; Zhong, Q. Z.; Zhang, X. H.; Cao, Y. Z.; Hu, B.; Zhai, T.; Gong, L. et al. WO3–x/MoO3–xcore/shell nanowires on carbon fabric as an anode for all-solid-state asymmetric supercapacitors. Adv. Energy Mater. 2012, 2, 1328–1332.

37

Lu, X. H.; Yu, M. H.; Wang, G. M.; Zhai, T.; Xie, S. L.; Ling, Y. C.; Tong, Y. X.; Li, Y. H-TiO2@MnO2//H-TiO2@C core-shell nanowires for high performance and flexible asymmetric supercapacitors. Adv. Mater. 2013, 25, 267–272.

File
nr-10-12-4448_ESM.pdf (1.5 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 26 April 2017
Revised: 15 June 2017
Accepted: 30 June 2017
Published: 01 September 2017
Issue date: December 2017

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany 2017

Acknowledgements

Acknowledgements

X. G. Z. acknowledges the supports by the National Basic Research Program of China (No. 2014CB239701), National Natural Science Foundation of China (Nos. 51372116, 51504139, and 51672128). X. L. J. thanks Oregon State University for the financial supports. S. Y. D. acknowledges the Funding for Outstanding Doctoral Dissertation in NUAA (No. BCXJ16-07), Funding of Jiangsu Innovation Program for Graduate Education (No. KYLX16_0341), the Priority Academic Program Development of Jiangsu Higher Education (PAPD), and the China Scholarship Council (CSC) for providing a scholarship for Ph.D. study at Oregon State University.

Return