Journal Home > Volume 10 , Issue 11

A desirable methanol oxidation electrocatalyst was fabricated by metal atom diffusion to form an alloy of an assembled three-dimensional (3D) radial nanostructure of SnNi nanoneedles loaded with SnNiPt nanoparticles (NPs). Herein, metal atom diffusion occurred between the SnNi support and loaded Pt NPs to form a SnNiPt ternary alloy on the catalyst surface. The as-obtained catalyst combines the excellent catalytic performance of the alloy and advantages of the 3D nanostructure; the SnNiPt NPs, which fused on the surface of the SnNi nanoneedle support, can dramatically improve the availability of Pt during electrocatalysis, and thus elevate the catalytic activity. In addition, the efficient mass transfer of the 3D nanostructure reduced the onset potential. Furthermore, the catalyst achieved a favorable CO poisoning resistance and enhanced stability. After atomic interdiffusion, the catalytic activity drastically increased by 45%, and the other performances substantially improved. These results demonstrate the significant advantage and enormous potential of the atomic interdiffusion treatment in catalytic applications.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

SnNi nanoneedles assembled 3D radial nanostructure loaded with SnNiPt nanoparticles: Towards enhanced electrocatalysis performance for methanol oxidation

Show Author's information Hao Fang§Yuting Chen§Ming Wen( )Qingsheng WuQuanjing Zhu
School of Chemical Science and Engineering Shanghai Key Laboratory of Chemical Assessment and Sustainability Education Ministry Key Laboratory of Yangtze River Water Environment Tongji University, 1239 Siping Road Shanghai 200092 China

§ Hao Fang and Yuting Chen contributed equally to this work.

Abstract

A desirable methanol oxidation electrocatalyst was fabricated by metal atom diffusion to form an alloy of an assembled three-dimensional (3D) radial nanostructure of SnNi nanoneedles loaded with SnNiPt nanoparticles (NPs). Herein, metal atom diffusion occurred between the SnNi support and loaded Pt NPs to form a SnNiPt ternary alloy on the catalyst surface. The as-obtained catalyst combines the excellent catalytic performance of the alloy and advantages of the 3D nanostructure; the SnNiPt NPs, which fused on the surface of the SnNi nanoneedle support, can dramatically improve the availability of Pt during electrocatalysis, and thus elevate the catalytic activity. In addition, the efficient mass transfer of the 3D nanostructure reduced the onset potential. Furthermore, the catalyst achieved a favorable CO poisoning resistance and enhanced stability. After atomic interdiffusion, the catalytic activity drastically increased by 45%, and the other performances substantially improved. These results demonstrate the significant advantage and enormous potential of the atomic interdiffusion treatment in catalytic applications.

Keywords: electrocatalysis, methanol oxidation reaction, three-dimensional (3D) nanostructure, SnNiPt ternary alloy, direct methanol fuel cell anode catalyst

References(41)

1

Wang, D. S.; Peng, Q.; Li, Y. D. Nanocrystalline intermetallics and alloys. Nano Res. 2010, 3, 574-580.

2

Chalk, S. G.; Miller, J. F. Key challenges and recent progress in batteries, fuel cells, and hydrogen storage for clean energy systems. J. Power Sources 2006, 159, 73-80.

3

Tiwari, J. N.; Tiwari, R. N.; Singh, G.; Kim, K. S. Recent progress in the development of anode and cathode catalysts for direct methanol fuel cells. Nano Energy 2013, 2, 553-578.

4

Li, L.; Hu, L. P.; Li, J.; Wei, Z. D. Enhanced stability of Pt nanoparticle electrocatalysts for fuel cells. Nano Res. 2015, 8, 418-440.

5

Zhao, X.; Yin, M.; Ma, L.; Liang, L.; Liu, C. P.; Liao, J. H.; Lu, T. H.; Xing, W. Recent advances in catalysts for direct methanol fuel cells. Energy Environ. Sci. 2011, 4, 2736-2753.

6

Kuang, Y.; Zhang, Y.; Cai, Z.; Feng, G.; Jiang, Y. Y.; Jin, C. H.; Luo, J.; Sun, X. M. Single-crystalline dendritic bimetallic and multimetallic nanocubes. Chem. Sci. 2015, 6, 7122-7129.

7

Cai, Z.; Lu, Z. Y.; Bi, Y. M.; Li, Y. P.; Kuang, Y.; Sun, X. M. Superior anti-CO poisoning capability: Au-decorated PtFe nanocatalysts for high-performance methanol oxidation. Chem. Commun. 2016, 52, 3903-3906.

8

Ahmed, M.; Dincer, I. A review on methanol crossover in direct methanol fuel cells: Challenges and achievements. Int. J. Energy Res. 2011, 35, 1213-1228.

9

Kakati, N.; Maiti, J.; Lee, S. H.; Jee, S. H.; Viswanathan, B.; Yoon, Y. S. anode catalysts for direct methanol fuel cells in acidic media: Do we have any alternative for Pt or Pt-Ru? Chem. Rev. 2014, 114, 12397-12429.

10

Li, H.; Li, L. S.; Li, Y. D. The electronic structure and geometric structure of nanoclusters as catalytic active sites. Nanotechnol. Rev. 2013, 2, 515-528.

11

You, H. J.; Yang, S. C.; Ding, B. J.; Yang, H. Synthesis of colloidal metal and metal alloy nanoparticles for electrochemical energy applications. Chem. Soc. Rev. 2013, 42, 2880-2904.

12

Roth, C.; Papworth, A. J.; Hussain, I.; Nichols, R. J.; Schiffrin, D. J. A Pt/Ru nanoparticulate system to study the bifunctional mechanism of electrocatalysis. J. Electroanal. Chem. 2005, 581, 79-85.

13

Khotseng, L.; Bangisa, A.; Modibedi, R. M.; Linkov, V. Electrochemical evaluation of Pt-based binary catalysts on various supports for the direct methanol fuel cell. Electrocatalysis 2016, 7, 1-12.

14

Yan, H. J.; Meng, M. C.; Wang, L.; Wu, A. P.; Tian, C. G.; Zhao, L.; Fu, H. G. Small-sized tungsten nitride anchoring into a 3D CNT-rGO framework as a superior bifunctional catalyst for the methanol oxidation and oxygen reduction reactions. Nano Res. 2016, 9, 329-343.

15

Kim, Y.; Noh, Y.; Lim, E. J.; Lee, S.; Choi, S. M.; Kim, W. B. Star-shaped Pd@Pt core-shell catalysts supported on reduced graphene oxide with superior electrocatalytic performance. J. Mater. Chem. A 2014, 2, 6976-6986.

16

Li, Y. J.; Zhang, H. C.; Jiang, M.; Kuang, Y.; Sun, X. M.; Duan, X. Ternary NiCoP nanosheet arrays: An excellent bifunctional catalyst for alkaline overall water splitting. Nano Res. 2016, 9, 2251-2259.

17

Kuang, Y.; Feng, G.; Li, P. S.; Bi, Y. M.; Li, Y. P.; Sun, X. M. Single-crystalline ultrathin nickel nanosheets array from in situ topotactic reduction for active and stable electrocatalysis. Angew. Chem., Int. Ed. 2016, 55, 693-697.

18

Wu, D. D.; Wen, M.; Gu, C.; Wu, Q. S. 2D NiFe/CeO2 basic-site-enhanced catalyst via in-situ topotactic reduction for selectively catalyzing the H2 generation from N2H4·H2O. ACS Appl. Mater. Interfaces 2017, 9, 16103-16108.

19

Shi, G. Y.; Yano, H.; Tryk, D. A.; Iiyama, A.; Uchida, H. Highly active, CO-tolerant, and robust hydrogen anode catalysts: Pt-M (M = Fe, Co, Ni) alloys with stabilized Pt-skin layers. ACS Catal. 2017, 7, 267-274.

20

Liu, H. L.; Nosheen, F.; Wang, X. Noble metal alloy complex nanostructures: Controllable synthesis and their electrochemical property. Chem. Soc. Rev. 2015, 44, 3056-3078.

21

Gong, M. X.; Jiang, X.; Xue, T. Y.; Shen, T. Y.; Xu, L.; Sun, D. M.; Tang, Y. W. PtCu nanodendrite-assisted synthesis of PtPdCu concave nanooctahedra for efficient electrocatalytic methanol oxidation. Catal. Sci. Technol. 2015, 5, 5105-5109.

22

Porter, N. S.; Wu, H.; Quan, Z. W.; Fang, J. Y. Shape- control and electrocatalytic activity-enhancement of Pt-based bimetallic nanocrystals. Acc. Chem. Res. 2013, 46, 1867-1877.

23

Nosheen, F.; Zhang, Z. C.; Xiang, G. L.; Xu, B.; Yang, Y.; Saleem, F.; Xu, X. B.; Zhang, J. C.; Wang, X. Three- dimensional hierarchical Pt-Cu superstructures. Nano Res. 2015, 8, 832-838.

24

Li, X. M.; Wen, M.; Wu, D. D.; Wu, Q. S.; Li, J. Q. Pd-on-NiCu nanosheets with enhanced electro-catalytic performances for methanol oxidation. J. Alloys Compd. 2016, 685, 42-49.

25

Wen, M.; Zhou, B.; Fang, H.; Wu, Q. S.; Chen, S. P. Novel- phase structural high-efficiency anode catalyst for methanol fuel cells: α-(NiCu)3Pd nanoalloy. J. Phys. Chem. C 2014, 118, 26713-26720.

26

Fang, H.; Wen, M.; Chen, H. X.; Wu, Q. S.; Li, W. Y. Graphene stabilized ultra-small CuNi nanocomposite with high activity and recyclability toward catalysing the reduction of aromatic nitro-compounds. Nanoscale 2016, 8, 536-542.

27

Zan, G. T.; Wu, Q. S. Biomimetic and bioinspired synthesis of nanomaterials/nanostructures. Adv. Mater. 2016, 28, 2099-2147.

28

Joshi, R. K.; Schneider, J. J. Assembly of one dimensional inorganic nanostructures into functional 2D and 3D architectures. Synthesis, arrangement and functionality. Chem. Soc. Rev. 2012, 41, 5285-5312.

29

Tiwari, J. N.; Tiwari, R. N.; Kim, K. S. Zero-dimensional, one-dimensional, two-dimensional and three-dimensional nanostructured materials for advanced electrochemical energy devices. Prog. Mater. Sci. 2012, 57, 724-803.

30

Rolison, D. R.; Long, J. W.; Lytle, J. C.; Fischer, A. E.; Rhodes, C. P.; McEvoy, T. M.; Bourg, M. E.; Lubers, A. M. Multifunctional 3D nanoarchitectures for energy storage and conversion. Chem. Soc. Rev. 2009, 38, 226-252.

31

Wang, C. X.; Wang, J.; Chen, H. X.; Wen, M.; Xing, K.; Chen, S. P.; Wu, Q. S. An interlayer nanostructure of rGO/ Sn2Fe-NRs array/rGO with high capacity for lithium ion battery anodes. Sci. China Mater. 2016, 59, 927-937.

32

Xie, F. Y.; Meng, H.; Shen, P. K. Diffusion study in a novel three-dimensional electrode for direct methanol fuel cells. Electrochim. Acta 2008, 53, 5039-5044.

33

Sun, Y. P.; Xing, L.; Scott, K. Analysis of the kinetics of methanol oxidation in a porous Pt-Ru anode. J. Power Sources 2010, 195, 1-10.

34

Prabhuram, J.; Zhao, T. S.; Yang, H. Methanol adsorbates on the DMFC cathode and their effect on the cell performance. J. Electroanal. Chem. 2005, 578, 105-112.

35

Flórez-Montaño, J.; García, G.; Rodríguez, J. L.; Pastor, E.; Cappellari, P.; Planes, G. A. On the design of Pt based catalysts. Combining porous architecture with surface modification by Sn for electrocatalytic activity enhancement. J. Power Sources 2015, 282, 34-44.

36

Almeida, T. S.; Kokoh, K. B.; De Andrade, A. R. Effect of Ni on Pt/C and PtSn/C prepared by the Pechini method. Int. J. Hydrogen Energy 2011, 36, 3803-3810.

37

dos SantosCorrea, P.; da Silva, E. L.; da Silva, R. F.; Radtke, C.; Moreno, B.; Chinarro, E.; de Fraga Malfatti, C. Effect of decreasing platinum amount in Pt-Sn-Ni alloys supported on carbon as electrocatalysts for ethanol electrooxidation. Int. J. Hydrogen Energy 2012, 37, 9314-9323.

38

Ribadeneira, E.; Hoyos, B. A. Evaluation of Pt-Ru-Ni and Pt-Sn-Ni catalysts as anodes in direct ethanol fuel cells. J. Power Sources 2008, 180, 238-242.

39

Beyhan, S.; Léger, J. M.; Kadırgan, F. Pronounced synergetic effect of the nano-sized PtSnNi/C catalyst for ethanol oxidation in direct ethanol fuel cell. Appl. Catal. B Environ. 2013, 130-131, 305-313.

40

Park, K. W.; Choi, J. H.; Kwon, B. K.; Lee, S. A.; Sung, Y. E.; Ha, H. Y.; Hong, S. A.; Kim, H.; Wieckowski, A. Chemical and electronic effects of Ni in Pt/Ni and Pt/Ru/Ni alloy nanoparticles in methanol electrooxidation. J. Phys. Chem. B 2002, 106, 1869-1877.

41

Nascente, P. A. P. Materials characterization by X-ray photoelectron spectroscopy. J. Mol. Catal. A Chem. 2005, 228, 145-150.

File
nr-10-11-3929_ESM.pdf (4 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 05 May 2017
Revised: 18 June 2017
Accepted: 23 June 2017
Published: 08 August 2017
Issue date: November 2017

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2017

Acknowledgements

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 21771140, 21471114, 91122103 and 51271132).

Return