Journal Home > Volume 11 , Issue 3

Designing a better carbon framework is critical for harnessing the high theoretical capacity of Li-S batteries and avoiding their drawbacks, such as the insulating nature of sulfur, active material loss, and the polysulfide shuttle reaction. Here, we report an ingenious design of hollow carbon nanofibers with closed ends and protogenetic mesopores in the shell that can be retracted to micropores after sulfur infusion. Such dynamic adjustable pore sizes ensure a high sulfur loading, and more importantly, eliminate excessive contact of sulfur species with the electrolyte. Together, the high aspect ratio and thin carbon shells of the carbon nanofibers facilitate rapid transport of Li+ ions and electrons, and the closed-end structure of the carbon nanofibers further blocks polysulfide dissolution from both ends, which is remarkably different from that for carbon nanotubes with open ends. The obtained sulfur-carbon cathodes exhibit excellent performance marked by high sulfur utilization, superior rate capability (1, 170, 1, 050, and 860 mA·h·g-1 at 1.0, 2.0, and 4.0 C (1 C = 1.675 A·g-1), respectively), and a stable reversible capacity of 847 mA·h·g-1 after 300 cycles at a high rate of 2.0 C.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Hollow carbon nanofibers with dynamic adjustable pore sizes and closed ends as hosts for high-rate lithium-sulfur battery cathodes

Show Author's information Xiang-Qian ZhangBin HeWen-Cui LiAn-Hui Lu( )
State Key Laboratory of Fine ChemicalsSchool of Chemical EngineeringFaculty of ChemicalEnvironmental and Biological Science and TechnologyDalian University of TechnologyLinggong Road 2Dalian116024China

Abstract

Designing a better carbon framework is critical for harnessing the high theoretical capacity of Li-S batteries and avoiding their drawbacks, such as the insulating nature of sulfur, active material loss, and the polysulfide shuttle reaction. Here, we report an ingenious design of hollow carbon nanofibers with closed ends and protogenetic mesopores in the shell that can be retracted to micropores after sulfur infusion. Such dynamic adjustable pore sizes ensure a high sulfur loading, and more importantly, eliminate excessive contact of sulfur species with the electrolyte. Together, the high aspect ratio and thin carbon shells of the carbon nanofibers facilitate rapid transport of Li+ ions and electrons, and the closed-end structure of the carbon nanofibers further blocks polysulfide dissolution from both ends, which is remarkably different from that for carbon nanotubes with open ends. The obtained sulfur-carbon cathodes exhibit excellent performance marked by high sulfur utilization, superior rate capability (1, 170, 1, 050, and 860 mA·h·g-1 at 1.0, 2.0, and 4.0 C (1 C = 1.675 A·g-1), respectively), and a stable reversible capacity of 847 mA·h·g-1 after 300 cycles at a high rate of 2.0 C.

Keywords: hollow carbon nanofibers, pore-adjusting strategy, sulfur cathodes, rate capability, energy materials

References(47)

1

Yang, Y.; Zheng, G. Y.; Cui, Y. Nanostructured sulfur cathodes. Chem. Soc. Rev. 2013, 42, 3018-3032.

2

Wang, L. N.; Wang, Y. G.; Xia, Y. Y. A high performance lithium-ion sulfur battery based on a Li2S cathode using a dual-phase electrolyte. Energy Environ. Sci. 2015, 8, 1551-1558.

3

Li, Z.; Huang, Y. M.; Yuan, L. X.; Hao, Z. X.; Huang, Y. H. Status and prospects in sulfur-carbon composites as cathode materials for rechargeable lithium-sulfur batteries. Carbon 2015, 92, 41-63.

4

Dai, L. M.; Chang, D. W.; Baek, J. B.; Lu, W. Carbon nanomaterials for advanced energy conversion and storage. Small 2012, 8, 1130-1166.

5

Borchardt, L.; Oschatz, M.; Kaskel, S. Carbon materials for lithium sulfur batteries—Ten critical questions. Chem. —Eur. J. 2016, 22, 7324-7351.

6

Wang, J. L.; He, Y. S.; Yang, J. Sulfur-based composite cathode materials for high-energy rechargeable lithium batteries. Adv. Mater. 2015, 27, 569-575.

7

Chen, S. Q.; Sun, B.; Xie, X. Q.; Mondal, A. K.; Huang, X. D.; Wang, G. X. Multi-chambered micro/mesoporous carbon nanocubes as new polysulfides reserviors for lithium- sulfur batteries with long cycle life. Nano Energy 2015, 16, 268-280.

8

Zheng, Z. M.; Guo, H. C.; Pei, F.; Zhang, X.; Chen, X. Y.; Fang, X. L.; Wang, T. H.; Zheng, N. F. High sulfur loading in hierarchical porous carbon rods constructed by vertically oriented porous graphene-like nanosheets for Li-S batteries. Adv. Funct. Mater. 2016, 26, 8952-8959.

9

Yin, Y. X.; Xin, S.; Guo, Y. G.; Wan, L. J. Lithium-sulfur batteries: Electrochemistry, materials, and prospects. Angew. Chem., Int. Ed. 2013, 52, 13186-13200.

10

Bruce, P. G.; Freunberger, S. A.; Hardwick, L. J.; Tarascon, J. M. Li-O2 and Li-S batteries with high energy storage. Nat. Mater. 2012, 11, 19-29.

11

Chen, H. W.; Wang, C. H.; Dong, W. L.; Lu, W.; Du, Z. L.; Chen, L. W. Monodispersed sulfur nanoparticles for lithium- sulfur batteries with theoretical performance. Nano Lett. 2015, 15, 798-802.

12

Ji, X. L.; Lee, K. T.; Nazar, L. F. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nat. Mater. 2009, 8, 500-506.

13

Jayaprakash, N.; Shen, J.; Moganty, S. S.; Corona, A.; Archer, L. A. Porous hollow carbon@sulfur composites for high-power lithium-sulfur batteries. Angew. Chem., Int. Ed. 2011, 123, 6026-6030.

14

Zhang, B.; Qin, X.; Li, G. R.; Gao, X. P. Enhancement of long stability of sulfur cathode by encapsulating sulfur into micropores of carbon spheres. Energy Environ. Sci. 2010, 3, 1531-1537.

15

Zhou, W. D.; Wang, C. M.; Zhang, Q. L.; Abruña, H. D.; He, Y.; Wang, J. W.; Mao, S. X.; Xiao, X. C. Tailoring pore size of nitrogen-doped hollow carbon nanospheres for confining sulfur in lithium-sulfur batteries. Adv. Energy Mater. 2015, 5, 1401752.

16

Sun, Q.; He, B.; Zhang, X. -Q.; Lu, A. -H. Engineering of hollow core-shell interlinked carbon spheres for highly stable lithium-sulfur batteries. ACS Nano 2015, 9, 8504-8513.

17

Peng, X. -X.; Lu, Y. -Q.; Zhou, L. -L.; Sheng, T.; Shen, S. -Y.; Liao, H. -G.; Huang, L.; Li, J. -T.; Sun, S. -G. Graphitized porous carbon materials with high sulfur loading for lithium- sulfur batteries. Nano Energy 2017, 32, 503-510.

18

Zheng, G. Y.; Yang, Y.; Cha, J. J.; Hong, S. S.; Cui, Y. Hollow carbon nanofiber-encapsulated sulfur cathodes for high specific capacity rechargeable lithium batteries. Nano Lett. 2011, 11, 4462-4467.

19

Li, Z.; Zhang, J. T.; Lou, X. W. Hollow carbon nanofibers filled with MnO2 nanosheets as efficient sulfur hosts for lithium-sulfur batteries. Angew. Chem., Int. Ed. 2015, 54, 12886-12890.

20

Mi, K.; Jiang, Y.; Feng, J. K.; Qian, Y. T.; Xiong, S. L. Hierarchical carbon nanotubes with a thick microporous wall and inner channel as efficient scaffolds for lithium-sulfur batteries. Adv. Funct. Mater. 2016, 26, 1571-1579.

21

Hu, G. J.; Sun, Z. H.; Shi, C.; Fang, R. P.; Chen, J.; Hou, P. X.; Liu, C.; Cheng, H. M.; Li, F. A sulfur-rich copolymer@CNT hybrid cathode with dual-confinement of polysulfides for high-performance lithium-sulfur batteries. Adv. Mater. 2017, 29, 1603835.

22

Jin, F. Y.; Xiao, S.; Lu, L. J.; Wang, Y. Efficient activation of high-loading sulfur by small CNTs confined inside a large CNT for high-capacity and high-rate lithium-sulfur batteries. Nano Lett. 2016, 16, 440-447.

23

Zhao, Y.; Wu, W. L.; Li, J. X.; Xu, Z. C.; Guan, L. H. Encapsulating MWNTs into hollow porous carbon nanotubes: A tube-in-tube carbon nanostructure for high-performance lithium-sulfur batteries. Adv. Mater. 2014, 26, 5113-5118.

24

Zhang, J.; Yang, C. -P.; Yin, Y. -X.; Wan, L. -J.; Guo, Y. -G. Sulfur encapsulated in graphitic carbon nanocages for high-rate and long-cycle lithium-sulfur batteries. Adv. Mater. 2016, 28, 9539-9544.

25

Pang, Q.; Kundu, D.; Nazar, L. F. A graphene-like metallic cathode host for long-life and high-loading lithium-sulfur batteries. Mater. Horiz. 2016, 3, 130-136.

26

Zhou, G. M.; Pei, S. F.; Li, L.; Wang, D. -W.; Wang, S. G.; Huang, K.; Yin, L. -C.; Li, F.; Cheng. H. -M. A graphene- pure-sulfur sandwich structure for ultrafast, long-life lithium- sulfur batteries. Adv. Mater. 2014, 26, 625-631.

27

He, B.; Li, W. -C.; Yang, C.; Wang, S. -Q.; Lu, A. -H. Incorporating sulfur inside the pores of carbons for advanced lithium-sulfur batteries: An electrolysis approach. ACS Nano 2016, 10, 1633-1639.

28

Zhou, W. D.; Xiao, X. C.; Cai, M.; Yang, L. Polydopamine- coated, nitrogen-doped, hollow carbon-sulfur double-layered core-shell structure for improving lithium-sulfur batteries. Nano Lett. 2014, 14, 5250-5256.

29

Zhou, W. D.; Yu, Y. C.; Chen, H.; DiSalvo, F. J.; Abruña, H. D. Yolk-shell structure of polyaniline-coated sulfur for lithium-sulfur batteries. J. Am. Chem. Soc. 2013, 135, 16736-16743.

30

Zhou, Y.; Zhou, C. G.; Li, Q. Y.; Yan, C. J.; Han, B.; Xia, K. S.; Gao, Q.; Wu, J. P. Enabling prominent high-rate and cycle performances in one lithium-sulfur battery: Designing permselective gateways for Li+ transportation in holey-CNT/S cathodes. Adv. Mater. 2015, 27, 3774-3781.

31

Chen, S. Q.; Huang, X. D.; Liu, H.; Sun, B.; Yeoh, W.; Li, K. F.; Zhang, J. Q.; Wang, G. X. 3D hyperbranched hollow carbon nanorod architectures for high-performance lithium- sulfur batteries. Adv. Energy Mater. 2014, 4, 1301761.

32

Li, Z.; Yuan, L. X.; Yi, Z. Q.; Sun, Y. M.; Liu, Y.; Jiang, Y.; Shen, Y.; Xin, Y.; Zhang, Z. L.; Huang, Y. H. Insight into the electrode mechanism in lithium-sulfur batteries with ordered microporous carbon confined sulfur as the cathode. Adv. Energy Mater. 2014, 4, 1301473.

33

Zhu, Q. Z.; Zhao, Q.; An, Y. B.; Anasori, B.; Wang, H. R.; Xu, B. Ultra-microporous carbons encapsulate small sulfur molecules for high performance lithium-sulfur battery. Nano Energy 2017, 33, 402-409.

34

Li, Z.; Jiang, Y.; Yuan, L. X.; Yi, Z. Q.; Wu, C.; Liu, Y.; Strasser, P.; Huang, Y. H. A highly ordered meso@microporous carbon-supported sulfur@smaller sulfur core-shell structured cathode for Li-S batteries. ACS Nano 2014, 8, 9295-9303.

35

Zhang, X. -Q.; Sun, Q.; Dong, W.; Li, D.; Lu, A. -H.; Mu, J. -Q.; Li, W. -C. Synthesis of superior carbon nanofibers with large aspect ratio and tunable porosity for electrochemical energy storage. J. Mater. Chem. A 2013, 1, 9449-9455.

36

de Godoi, F. C.; Wang, D. -W.; Zeng, Q. C.; Wu, K. -H.; Gentle, I. R. Dependence of LiNO3 decomposition on cathode binders in Li-S batteries. J. Power Sources 2015, 288, 13-19.

37

Li, C. Y.; Ward, A. L.; Doris, S. E.; Pascal, T. A.; Prendergast, D.; Helms, B. A. Polysulfide-blocking microporous polymer membrane tailored for hybrid Li-sulfur flow batteries. Nano Lett. 2015, 15, 5724-5729.

38

Chung, S. -H.; Han, P.; Singhal, R.; Kalra, V.; Manthiram, A. Electrochemically stable rechargeable lithium-sulfur batteries with a microporous carbon nanofiber filter for polysulfide. Adv. Energy Mater. 2015, 5, 1500738.

39

Li, Z.; Zhang, J. T.; Guan, B. Y.; Wang, D.; Liu, L. -M.; Lou, X. W. D. A sulfur host based on titanium monoxide@carbon hollow spheres for advanced lithium-sulfur batteries. Nat. Commun. 2016, 7, 13065.

40

Zhu, L.; Peng, H. -J.; Liang, J. Y.; Huang, J. -Q.; Chen, C. -M.; Guo, X. F.; Zhu, W. C.; Li, P.; Zhang, Q. Interconnected carbon nanotube/graphene nanosphere scaffolds as free- standing paper electrode for high-rate and ultra-stable lithium-sulfur batteries. Nano Energy 2015, 11, 746-755.

41

Ma, L.; Zhuang, H. L.; Wei, S. Y.; Hendrickson, K. E.; Kim, M. S.; Cohn, G.; Hennig, R. G.; Archer, L. A. Enhanced Li-S batteries using amine-functionalized carbon nanotubes in the cathode. ACS Nano 2016, 10, 1050-1059.

42

Li, G. X.; Sun, J. H.; Hou, W. P.; Jiang, S. D.; Huang, Y.; Geng, J. X. Three-dimensional porous carbon composites containing high sulfur nanoparticle content for high- performance lithium-sulfur batteries. Nat. Commun. 2016, 7, 10601.

43

Rehman, S.; Tang, T. Y.; Ali, Z.; Huang, X. X.; Hou, Y. L. Integrated design of MnO2@carbon hollow nanoboxes to synergistically encapsulate polysulfides for empowering lithium sulfur batteries. Small 2017, 13, 1700087.

44

Li, G. -C.; Li, G. -R.; Ye, S. -H.; Gao, X. -P. A polyaniline- coated sulfur/carbon composite with an enhanced high-rate capability as a cathode material for lithium/sulfur batteries. Adv. Energy Mater. 2012, 2, 1238-1245.

45

Pei, F.; An, T. H.; Zang, J.; Zhao, X. J.; Fang, X. L.; Zheng, M. S.; Dong, Q. F.; Zheng, N. F. From hollow carbon spheres to N-doped hollow porous carbon bowls: Rational design of hollow carbon host for Li-S batteries. Adv. Energy Mater. 2016, 6, 1502539.

46

Peng, H. J.; Liang, J. Y.; Zhu, L.; Huang, J. Q.; Cheng, X. B.; Guo, X. F.; Ding, W. P.; Zhu, W. C.; Zhang, Q. Catalytic self-limited assembly at hard templates: A mesoscale approach to graphene nanoshells for lithium-sulfur batteries. ACS Nano 2014, 8, 11280-11289.

47

Zeng, L. C.; Pan, F. S.; Li, W. H.; Jiang, Y.; Zhong, X. W.; Yu, Y. Free-standing porous carbon nanofibers-sulfur composite for flexible Li-S battery cathode. Nanoscale 2014, 6, 9579-9587.

File
12274_2017_1737_MOESM1_ESM.pdf (1.6 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 18 April 2017
Revised: 18 April 2017
Accepted: 22 June 2017
Published: 02 February 2018
Issue date: March 2018

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany 2017

Acknowledgements

Acknowledgements

This work was supported by the National Basic Research Program of China (No. 2013CB934104), the National Natural Science Foundation of China (Nos. 21225312 and 21376047), and Cheung Kong Scholars Program of China (No. T2015036).

Return