Journal Home > Volume 11 , Issue 3

Although In2O3 nanofibers (NFs) are well-known candidates as active materials for next-generation, low-cost electronics, these NF based devices still suffer from high leakage current, insufficient on–off current ratios (Ion/Ioff), and large, negative threshold voltages (VTH), leading to poor device performance, parasitic energy consumption, and rather complicated circuit design. Here, instead of the conventional surface modification of In2O3 NFs, we present a one-step electrospinning process (i.e., without hot-press) to obtain controllable Mg-doped In2O3 NF networks to achieve high-performance enhancement-mode thin-film transistors (TFTs). By simply adjusting the Mg doping concentration, the device performance can be manipulated precisely. For the optimal doping concentration of 2 mol%, the devices exhibit a small VTH (3.2 V), high saturation current (1.1 × 10–4 A), large on/off current ratio (> 108), and respectable peak carrier mobility (2.04 cm2/(V·s)), corresponding to one of the best device performances among all 1D metal-oxide NFs based devices reported so far. When high-κ HfOx thin films are employed as the gate dielectric, their electron mobility and VTH can be further improved to 5.30 cm2/(V·s) and 0.9 V, respectively, which demonstrates the promising prospect of these Mg-doped In2O3 NF networks for highperformance, large-scale, and low-power electronics.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

High-performance enhancement-mode thin-film transistors based on Mg-doped In2O3 nanofiber networks

Show Author's information Hongchao Zhang1You Meng1Longfei Song1Linqu Luo1Yuanbin Qin2Ning Han3Zaixing Yang4Lei Liu1Johnny C. Ho5,6,7( )Fengyun Wang1( )
College of Physics and Cultivation Base for State Key LaboratoryQingdao UniversityQingdao266071China
Center for Advancing Materials Performance from the NanoscaleState Key Laboratory for Mechanical Behavior of MaterialsXi'an Jiaotong UniversityXi'an710049China
State Key Laboratory of Multiphase Complex SystemsInstitute of Process EngineeringChinese Academy of SciencesBeijing100190China
School of Microelectronics and Center of NanoelectronicsShandong UniversityJinan250100China
Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, KowloonHong KongChina
State Key Laboratory of Millimeter Waves, City University of Hong Kong, 83 Tat Chee Avenue, KowloonHong KongChina
Shenzhen Research InstituteCity University of Hong KongShenzhen518057China

Abstract

Although In2O3 nanofibers (NFs) are well-known candidates as active materials for next-generation, low-cost electronics, these NF based devices still suffer from high leakage current, insufficient on–off current ratios (Ion/Ioff), and large, negative threshold voltages (VTH), leading to poor device performance, parasitic energy consumption, and rather complicated circuit design. Here, instead of the conventional surface modification of In2O3 NFs, we present a one-step electrospinning process (i.e., without hot-press) to obtain controllable Mg-doped In2O3 NF networks to achieve high-performance enhancement-mode thin-film transistors (TFTs). By simply adjusting the Mg doping concentration, the device performance can be manipulated precisely. For the optimal doping concentration of 2 mol%, the devices exhibit a small VTH (3.2 V), high saturation current (1.1 × 10–4 A), large on/off current ratio (> 108), and respectable peak carrier mobility (2.04 cm2/(V·s)), corresponding to one of the best device performances among all 1D metal-oxide NFs based devices reported so far. When high-κ HfOx thin films are employed as the gate dielectric, their electron mobility and VTH can be further improved to 5.30 cm2/(V·s) and 0.9 V, respectively, which demonstrates the promising prospect of these Mg-doped In2O3 NF networks for highperformance, large-scale, and low-power electronics.

Keywords: doping, In2O3 nanofiber, transistor, threshold voltage, enhancement mode

References(38)

1

Huang, Y.; Duan, X. F.; Cui, Y.; Lauhon, L. J.; Kim, K. H.; Lieber, C. M. Logic gates and computation from assembled nanowire building blocks. Science 2001, 294, 1313-1317.

2

Chuang, S.; Gao, Q.; Kapadia, R.; Ford, A. C.; Guo, J.; Javey, A. Ballistic InAs nanowire transistors. Nano Lett. 2012, 13, 555-558.

3

Razavieh, A.; Mehrotra, S.; Singh, N.; Klimeck, G.; Janes, D.; Appenzeller, J. Utilizing the unique properties of nanowire MOSFETs for RF applications. Nano Lett. 2013, 13, 1549- 1554.

4

Duan, X. F.; Niu, C. M.; Sahi, V.; Chen, J.; Parce, J. W.; Empedocles, S.; Goldman, J. L. High-performance thin-film transistors using semiconductor nanowires and nanoribbons. Nature 2003, 425, 274-278.

5

Li, Y.; Qian, F.; Xiang, J.; Lieber, C. M. Nanowire electronic and optoelectronic devices. Mater. Today 2006, 9, 18-27.

6

Thelander, C.; Agarwal, P.; Brongersma, S.; Eymery, J.; Feiner, L. F.; Forchel, A.; Scheffler, M.; Riess, W.; Ohlsson, B. J.; Gösele, U. et al. Nanowire-based one-dimensional electronics. Mater. Today 2006, 9, 28-35.

7

Ko, H.; Zhang, Z. X.; Ho, J. C.; Takei, K.; Kapadia, R.; Chueh, Y. L.; Cao, W. Z.; Cruden, B. A.; Javey, A. Flexible carbon-nanofiber connectors with anisotropic adhesion properties. Small 2010, 6, 22-26.

8

Ju, S; Li, J. F.; Liu, J.; Chen, P. C.; Ha, Y. G.; Ishikawa, F.; Chang, H.; Zhou, C. W.; Facchetti, W. A.; Janes, D. B. et al. Transparent active matrix organic light-emitting diode displays driven by nanowire transistor circuitry. Nano Lett. 2008, 8, 997-1004.

9

Ju, S.; Facchetti, A.; Xuan, Y.; Liu, J.; Ishikawa, F.; Ye, P. D.; Zhou, C. W.; Marks, T. J.; Janes, D. B. Fabrication of fully transparent nanowire transistors for transparent and flexible electronics. Nat. Nanotechnol. 2007, 2, 378-384.

10

Lee, C.; Srisungsitthisunti, P.; Park, S.; Kim, S.; Xu, X. F.; Roy, K.; Janes, D. B.; Zhou, C. W.; Ju, S.; Qi, M. H. Control of current saturation and threshold voltage shift in indium oxide nanowire transistors with femtosecond laser annealing. ACS Nano 2011, 5, 1095-1101.

11

Li, C.; Zhang, D.; Han, S.; Liu, X.; Tang, T.; Zhou, C. Diameter-controlled growth of single-crystalline In2O3 nanowires and their electronic properties. Adv. Mater. 2003, 15, 143-146.

12

Su, M.; Yang, Z. Y.; Liao, L.; Zou, X. M.; Ho, J. C.; Wang, J. L.; Wang, J. L.; Hu, W. D.; Xiao, X. H.; Jiang, C. Z. et al. Side-gated In2O3 nanowire ferroelectric FETs for high- performance nonvolatile memory applications. Adv. Sci. 2016, 3, 1600078.

13

Park, H.; Yoon, K. R.; Kim, S. K.; Kim, I. D.; Jin, J.; Kim, Y. H.; Bae, B. S. Highly conducting In2O3 nanowire network with passivating ZrO2 thin film for solution-processed field effect transistors. Adv. Electron. Mater. 2016, 2, 1600218.

14

Ford, A. C.; Ho, J. C.; Chueh, Y. L.; Tseng, Y. C.; Fan, Z. Y.; Guo, J.; Bokor, J.; Javey, A. Diameter-dependent electron mobility of InAs nanowires. Nano Lett. 2009, 9, 360-365.

15

Nikoobakht, B. Toward industrial-scale fabrication of nanowire-based devices. Chem. Mater. 2007, 19, 5279-5284.

16

Xuan, Y.; Wu, Y. Q.; Ye, P. D. High-performance inversion- type enhancement-mode InGaAs MOSFET with maximum drain current exceeding 1 A/mm. IEEE Electron Device Lett. 2008, 29, 294-296.

17

Zhu, Z. T.; Suzuki, M.; Nagashima, K.; Yoshida, H.; Kanai, M.; Gang, M.; Anzai, H.; Zhuge, F.; Yong, H.; Boudot, M. et al. Rational concept for reducing growth temperature in vapor-liquid-solid process of metal oxide nanowires. Nano Lett. 2016, 16, 7495-7502.

18

Zhang, H. D.; Yu, M.; Zhang, J. C.; Sheng, C. H.; Yan, X.; Han, W. P.; Liu, Y. C.; Chen, S.; Shen, G. Z.; Long, Y. Z. Fabrication and photoelectric properties of La-doped p-type ZnO nanofibers and crossed p-n homojunctions by electrospinning. Nanoscale 2015, 7, 10513-10518.

19

Liu, S.; Liu, S. L.; Long, Y. Z.; Liu, L. Z.; Zhang, H. D.; Zhang, J. C.; Han, W. P.; Liu, Y. C. Fabrication of p-type ZnO nanofibers by electrospinning for field-effect and rectifying devices. Appl. Phys. Lett. 2014, 104, 042105.

20

Kim, S.; Carpenter, P. D.; Jean, R. K.; Chen, H. T.; Zhou, C. W.; Ju, S.; Janes, D. B. Role of self-assembled monolayer passivation in electrical transport properties and flicker noise of nanowire transistors. ACS Nano 2012, 6, 7352-7361.

21

Hong, W. K.; Sohn, J. I.; Hwang, D. K.; Kwon, S. S.; Jo, G.; Song, S.; Kim, S. M.; Ko, H. J.; Park, S. J.; Welland, M. E. et al. Tunable electronic transport characteristics of surface- architecture-controlled ZnO nanowire field effect transistors. Nano Lett. 2008, 8, 950-956.

22

Zou, X. M.; Liu, X. Q.; Wang, C. L.; Jiang, Y.; Wang, Y.; Xiao, X. H.; Ho, J. C.; Li, J. C.; Jiang, C. Z.; Xiong, Q. H. et al. Controllable electrical properties of metal-doped In2O3 nanowires for high-performance enhancement-mode transistors. ACS Nano 2013, 7, 804-810.

23

Wang, F. Y.; Yip, S. P.; Dong, G. F.; Xiu, F.; Song, L. F.; Yang, Z. X.; Li. D. P.; Hung, T. F.; Han, N.; Ho, J. C. Manipulating Ⅲ-V nanowire transistor performance via surface decoration of metal-oxide nanoparticles. Adv. Mater. Interface 2017, 4, 1700260.

24

Zou, X. M.; Wang, J. L.; Liu, X. Q.; Wang, C. L.; Jiang, Y.; Wang, Y.; Xiao, X. H.; Ho, J. C.; Li, J. C.; Jiang, C. Z. et al. Rational design of sub-parts per million specific gas sensors array based on metal nanoparticles decorated nanowire enhancement-mode transistors. Nano Lett. 2013, 13, 3287- 3292.

25

Zhang, X. W.; Zhang, X. J.; Wang, L.; Wu, Y. M.; Wang, Y.; Gao, P.; Han, Y. Y.; Jie, J. S. ZnSe nanowire/Si p-n heterojunctions: Device construction and optoelectronic applications. Nanotechnology 2013, 24, 395201.

26

Long, Y. Z.; Yu, M.; Sun, B.; Gu, C. Z.; Fan, Z. Y. Recent advances in large-scale assembly of semiconducting inorganic nanowires and nanofibers for electronics, sensors and photovoltaics. Chem. Soc. Rev. 2012, 41, 4560-4580.

27

Cao, J.; Dou, H. M.; Zhang, H.; Mei, H. X.; Liu, S.; Fei, T.; Wang, R.; Wang, L. J.; Zhang T. Controllable synthesis and HCHO-sensing properties of In2O3 micro/nanotubes with different diameters. Sens. Actuators B Chem. 2014, 198, 180-187.

28

Liu, H. Q.; Reccius, C. H.; Craighead, H. G. Single electrospun regioregular poly(3-hexylthiophene) nanofiber field-effect transistor. Appl. Phys. Lett. 2005, 87, 253106.

29

Teo, W. E.; Ramakrishna, S. A review on electrospinning design and nanofibre assemblies. Nanotechnology 2006, 17, R89-R106.

30

Wu, H.; Lin, D. D.; Zhang, R.; Pan, W. ZnO nanofiber field-effect transistor assembled by electrospinning. J. Am. Ceram. Soc. 2008, 91, 656-659.

31

Choi, S. H.; Jang, B. H.; Park, J. S.; Demadrille, R.; Tuller, H. L.; Kim, I. D. Low voltage operating field effect transistors with composite In2O3-ZnO-ZnGa2O4 nanofiber network as active channel layer. ACS Nano 2014, 8, 2318-2327.

32

Gazquez, G. C.; Lei, S. D.; George, A.; Gullapalli, H.; Boukamp, B. A.; Ajayan, P. M.; ten Elshof, J. E. Low-cost, large-area, facile, and rapid fabrication of aligned ZnO nanowire device arrays. ACS Appl. Mater. Interfaces 2016, 8, 13466-13471.

33

Zhao, C. H.; Huang, B. Y.; Xie, E. Q.; Zhou, J. Y.; Zhang, Z. X. Improving gas-sensing properties of electrospun In2O3 nanotubes by Mg acceptor doping. Sens. Actuators B Chem. 2015, 207, 313-320.

34

Meng, Y.; Liu, G. X.; Liu, A.; Guo, Z. D.; Sun, W. J.; Shan, F. K. Photochemical activation of electrospun In2O3 nanofibers for high-performance electronic devices. ACS Appl. Mater. Interfaces 2017, 9, 10805-10812.

35

Kim, G. H.; Jeong, W. H.; Ahn, B. D.; Shin, H. S.; Kim, H. J.; Kim, H. J.; Ryu, M. K.; Park, K. B.; Seon, J. B.; Lee, S. Y. Investigation of the effects of Mg incorporation into InZnO for high-performance and high-stability solution-processed thin film transistors. Appl. Phys. Lett. 2010, 96, 163506.

36

Liu, G. X.; Liu, A.; Zhu, H. H.; Shin, B.; Fortunato, E.; Martins, R.; Wang, Y. Q.; Shan, F. K. Low-temperature, nontoxic water-induced metal-oxide thin films and their application in thin-film transistors. Adv. Funct. Mater. 2015, 25, 2564-2572.

37

Zhang, F.; Liu, G. X.; Liu, A.; Shin, B.; Shan, F. K. Solution-processed hafnium oxide dielectric thin films for thin-film transistors applications. Ceram. Int. 2015, 41, 13218-13223.

38

Ko, J.; Kim, J.; Park, S. Y.; Lee, E.; Kim, K.; Lim, K. H.; Kim, Y. S. Solution-processed amorphous hafnium-lanthanum oxide gate insulator for oxide thin-film transistors. J. Mater. Chem. C 2014, 2, 1050-1056.

File
12274_2017_1735_MOESM1_ESM.pdf (1.7 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 11 May 2017
Revised: 15 June 2017
Accepted: 18 June 2017
Published: 02 February 2018
Issue date: March 2018

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany 2017

Acknowledgements

Acknowledgements

The work was financially supported by the National Natural Science Foundation of China (Nos. 51402160, 51302154, and 51672229), the General Research Fund of the Research Grants Council of Hong Kong, China (No. CityU 11275916), the Natural Science Foundation of Shandong Province, China (No. ZR2014EMQ011), the Taishan Scholar Program of Shandong Province, China, the Science Technology, and Innovation Committee of Shenzhen Municipality (No. JCYJ20160229165240684), and was supported by a grant from the Shenzhen Research Institute, City University of Hong Kong. The work was also supported by National Demonstration Center for Experimental Applied Physics Education (Qingdao University).

Return