Journal Home > Volume 11 , Issue 2

A strategy was developed to fabricate a set of MnO@C nanohybrids with MnO nanoparticles (NPs) embedded in an ultrathin three-dimensional (3D) carbon framework for use as anode materials for lithium-ion batteries (LIBs). The 3D carbon frameworks provide MnO NPs with electrical pathways and mechanical robustness, which efficiently improved the reaction kinetics, prevented the MnO from fracturing and agglomerating, and limited the formation of a solid electrolyte interface (SEI) at the MnO–electrolyte interface. Benefitting from the unique 3D framework structure, the MnO/C nanohybrids carbonized at 500 ℃ exhibited a highly reversible specific capacity of 1, 420 mAh·g-1 at 0.2 A·g-1, excellent cycling stability with 98% capacity retention, and enhanced rate performance of 680 mAh·g-1 at 2 A·g-1. The feasibility of the large-scale production of such MnO/C nanohybrids, associated with their outstanding Li-ion storage properties, opens a promising avenue for the development of high-performance anodes for nextgeneration LIBs.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Robust 3D network architectures of MnO nanoparticles bridged by ultrathin graphitic carbon for high-performance lithium-ion battery anodes

Show Author's information Jingchun Jia1,2Xiang Hu1,2Zhenhai Wen1,2( )
Key Laboratory of Design and Assembly of Functional NanostructuresFujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhou350002China
Fujian Provincial Key Laboratory of NanomaterialsFujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhou350002China

Abstract

A strategy was developed to fabricate a set of MnO@C nanohybrids with MnO nanoparticles (NPs) embedded in an ultrathin three-dimensional (3D) carbon framework for use as anode materials for lithium-ion batteries (LIBs). The 3D carbon frameworks provide MnO NPs with electrical pathways and mechanical robustness, which efficiently improved the reaction kinetics, prevented the MnO from fracturing and agglomerating, and limited the formation of a solid electrolyte interface (SEI) at the MnO–electrolyte interface. Benefitting from the unique 3D framework structure, the MnO/C nanohybrids carbonized at 500 ℃ exhibited a highly reversible specific capacity of 1, 420 mAh·g-1 at 0.2 A·g-1, excellent cycling stability with 98% capacity retention, and enhanced rate performance of 680 mAh·g-1 at 2 A·g-1. The feasibility of the large-scale production of such MnO/C nanohybrids, associated with their outstanding Li-ion storage properties, opens a promising avenue for the development of high-performance anodes for nextgeneration LIBs.

Keywords: anode, MnO, Li-ion battery, network architectures, ultrathin carbon

References(49)

1

Yuan, T. Z.; Jiang, Y. Z.; Sun, W. P.; Xiang, B.; Li, Y.; Yan, M.; Xu, B.; Dou, S. X. Ever-icreasing pseudocapacitance in RGO-MnO-RGO sandwich nanostructures for ultrahigh-rate lithium storage. Adv. Funct. Mater. 2016, 26, 2198-2206.

2

Wang, H. L.; Cui, L. -F.; Yang, Y.; Casalongue, H. S.; Robinson, J. T.; Liang, Y. Y.; Cui, Y.; Dai, H. J. Mn3O4-graphene hybrid as a high-capacity anode material for lithium ion batteries. J. Am. Chem. Soc. 2010, 132, 13978-13980.

3

Wang, H.; Liang, Q. Q.; Wang, W. J.; An, Y. R.; Li, J. H.; Guo, L. Preparation of flower-like SnO2 nanostructures and their applications in gas-sensing and lithium storage. Cryst. Growth Des. 2011, 11, 2942-2947.

4

Xin, X.; Zhou, X. F.; Wu, J. H.; Yao, X. Y.; Liu, Z. P. Scalable synthesis of TiO2/graphene nanostructured composite with high-rate performance for Lithium ion batteries. ACS Nano 2012, 6, 11035-11043.

5

Wang, G.; Sun, Y. H.; Li, D. B.; Wei, W.; Feng, X. L.; Müllen, K. Constructing hierarchically hollow core-shell MnO2/C hybrid spheres for high-performance lithium storage. Small 2016, 12, 3914-3919.

6

Pan, L.; Liu, Y. T.; Xie, X. M.; Ye, X. Y.; Zhu, X. D. Multi-dimensionally ordered, multi-functionally integrated r-GO@TiO2@Mn3O4 yolk-membrane-shell superstructures for ultrafast lithium storage. Nano Res. 2016, 9, 2057-2069.

7

Wei, W.; Wang, Z. H.; Liu, Z.; Liu, Y.; He, L.; Chen, D. Z.; Umar, A.; Guo, L.; Li, J. H. Metal oxide hollow nanostructures: Fabrication and Li storage performance. J. Power Sources 2013, 238, 376-387.

8

Kim, W. S.; Hwa, Y.; Kim, H. C.; Choi, J. H.; Sohn, H. -J.; Hong, S. H. SnO2@Co3O4 hollow nano-spheres for a Li-ion battery anode with extraordinary performance. Nano Res. 2014, 7, 1128-1136.

9

Su, D. W.; Dou, S. X.; Wang, G. X. Mesocrystal Co3O4 nanoplatelets as high capacity anode materials for Li-ion batteries. Nano Res. 2014, 7, 794-803.

10

Zhao, Y. X.; Zhang, Y.; Zhao, H.; Li, X. J.; Li, Y. P.; Wen, L.; Yan, Z. F.; Huo, Z. Y. Epitaxial growth of hyperbranched Cu/Cu2O/CuO core-shell nanowire heterostructures for lithium-ion batteries. Nano Res. 2015, 8, 2763-2776.

11

Choi, S. H.; Lee, J. K.; Kang, Y. C. Three-dimensional porous graphene-metal oxide composite microspheres: Preparation and application in Li-ion batteries. Nano Res. 2015, 8, 1584-1594.

12

Zhu, J.; Shan, Y.; Wang, T.; Sun, H. T.; Zhao, Z. P.; Mei, L.; Fan, Z.; Xu, Z.; Shakir, I.; Huang, Y. et al. A hyperaccumulation pathway to three-dimensional hierarchical porous nanocomposites for highly robust high-power electrodes. Nat. Commun. 2016, 7, 13432.

13

Fei, H. L.; Peng, Z. W.; Li, L.; Yang, Y.; Lu, W.; Samuel, E. L. G.; Fan, X. J.; Tour, J. M. Preparation of carbon-coated iron oxide nanoparticles dispersed on graphene sheets and applications as advanced anode materials for lithium-ion batteries. Nano Res. 2014, 7, 502-510.

14

Cao, K. Z.; Jiao, L. F.; Liu, Y. C.; Liu, H. Q.; Wang, Y. J.; Yuan, H. T. Ultra-high capacity lithium-ion batteries with hierarchical CoO nanowire clusters as binder free electrodes. Adv. Funct. Mater. 2015, 25, 1082-1089.

15

Wang, H. L.; Dai, H. J. Strongly coupled inorganic-nano-carbon hybrid materials for energy storage. Chem. Soc. Rev. 2013, 42, 3088-3113.

16

Zhu, C. Y.; Han, C. -G.; Saito, G.; Akiyama, T. MnO nanocrystals incorporated in a N-containing carbon matrix for Li ion battery anodes. RSC Adv. 2016, 6, 30445-30453.

17

Zhong, K. F.; Xia, X.; Zhang, B.; Li, H.; Wang, Z. X.; Chen, L. Q. MnO powder as anode active materials for lithium ion batteries. J. Power Sources 2010, 195, 3300-3308.

18

Guo, W.; Li, X.; Ng, D. H. L.; Ma, J. M. Integration of MnO@graphene with graphene networks towards Li-ion battery anodes. RSC Adv. 2015, 5, 96681-96684.

19

Kang, D. M.; Liu, Q. L.; Si, R.; Gu, J. J.; Zhang, W.; Zhang, D. Crosslinking-derived MnO/carbon hybrid with ultrasmall nanoparticles for increasing lithium storage capacity during cycling. Carbon 2016, 99, 138-147.

20

Li, X. W.; Xiong, S. L.; Li, J. F.; Liang, X.; Wang, J. Z.; Bai, J.; Qian, Y. T. MnO@carbon core-shell nanowires as stable high-performance anodes for lithium-ion batteries. Chem. Eur. J. 2013, 19, 11310-11319.

21

Wang, J. G.; Zhang, C. B.; Jin, D. D.; Xie, K. Y.; Wei, B. Q. Synthesis of ultralong MnO/C coaxial nanowires as freestanding anodes for high-performance lithium ion batteries. J. Mater. Chem. A 2015, 3, 13699-13705.

22

Yu, X. Q.; He, Y.; Sun, J. P.; Tang, K.; Li, H.; Chen, L. Q.; Huang, X. J. Nanocrystalline MnO thin film anode for lithium ion batteries with low overpotential. Electrochem. Commun. 2009, 11, 791-794.

23

Xia, Y.; Xiao, Z.; Dou, X.; Huang, H.; Lu, X. H.; Yan, R. J.; Gan, Y. P.; Zhu, W. J.; Tu, J. P.; Zhang, W. K. et al. Green and facile fabrication of hollow porous MnO/C microspheres from microalgaes for lithium-ion batteries. ACS Nano 2013, 7, 7083-7092.

24

Zhang, K. J.; Han, P. X.; Gu, L.; Zhang, L. X.; Liu, Z. H.; Kong, Q. S.; Zhang, C. J.; Dong, S. M.; Zhang, Z. Y.; Yao, J. H. et al. Synthesis of nitrogen-doped MnO/graphene nanosheets hybrid material for Lithium ion batteries. ACS Appl. Mat. Interfaces 2012, 4, 658-664.

25

Sun, Y. M.; Hu, X. L.; Luo, W.; Xia, F. F.; Huang, Y. H. Reconstruction of conformal nanoscale MnO on graphene as a high-capacity and long-life anode material for lithium ion batteries. Adv. Funct. Mater. 2013, 23, 2436-2444.

26

Zhang, L.; Zhang, G. Q.; Wu, H. B.; Yu, L.; Lou, X. W. Hierarchical tubular structures constructed by carbon-coated SnO2 nanoplates for highly reversible Lithium storage. Adv. Mater. 2013, 25, 2589-2593.

27

Chen, L. F.; Ma, S. X.; Lu, S.; Feng, Y.; Zhang, J.; Xin, S.; Yu, S. -H. Biotemplated synthesis of three-dimensional porous MnO/C-N nanocomposites from renewable rapeseed pollen: An anode material for lithium-ion batteries. Nano Res. 2017, 10, 1-11.

28

Li, J.; Wang, Y. C.; Zhou, T.; Zhang, H.; Sun, X. H.; Tang, J.; Zhang, L. J.; Al-Enizi, A. M.; Yang, Z. Q.; Zheng, G. F. Nanoparticle superlattices as efficient bifunctional electrocatalysts for water splitting. J. Am. Chem. Soc. 2015, 137, 14305-14312.

29

Li, X. W.; Li, D.; Qiao, L.; Wang, X. H.; Sun, X. L.; Wang, P.; He, D. Y. Interconnected porous MnO nanoflakes for high-performance lithium ion battery anodes. J. Mater. Chem. 2012, 22, 9189-9194.

30

Liu, C. F.; Zhang, C. K.; Song, H. Q.; Nan, X. H.; Fu, H. Y.; Cao, G. Z. MnO nanoparticles with cationic vacancies and discrepant crystallinity dispersed into porous carbon for Li-ion capacitors. J. Mater. Chem. A 2016, 4, 3362-3370.

31

Luo, W.; Hu, X. L.; Sun, Y. M.; Huang, Y. H. Controlled synthesis of mesoporous MnO/C networks by microwave irradiation and their enhanced lithium-storage properties. ACS Appl. Mat. Interfaces 2013, 5, 1997-2003.

32

Zhu, C. Y.; Sheng, N.; Akiyama, T. MnO nanoparticles embedded in a carbon matrix for a high performance Li ion battery anode. RSC Adv. 2015, 5, 21066-21073.

33

Hellgren, N.; Johansson, M. P.; Broitman, E.; Hultman, L.; Sundgren, J. E. Role of nitrogen in the formation of hard and elastic CNx thin films by reactive magnetron sputtering. Phys. Rev. B 1999, 59, 5162-5169.

34

Yang, C. X.; Gao, Q. M.; Tian, W. Q.; Tan, Y. L.; Zhang, T.; Yang, K.; Zhu, L. H. Superlow load of nanosized MnO on a porous carbon matrix from wood fibre with superior lithium ion storage performance. J. Mater. Chem. A 2014, 2, 19975-19982.

35

Zhang, E. H.; Xie, Y.; Ci, S. Q.; Jia, J. C.; Wen, Z. H. Porous Co3O4 hollow nanododecahedra for nonenzymatic glucose biosensor and biofuel cell. Biosens. Bioelectron. 2016, 81, 46-53.

36

Yang, D. S.; Bhattacharjya, D.; Song, M. Y.; Yu, J. -S. Highly efficient metal-free phosphorus-doped platelet ordered mesoporous carbon for electrocatalytic oxygen reduction. Carbon 2014, 67, 736-743.

37

Wang, S. B.; Xiao, C. L.; Xing, Y. L.; Xu, H. Z.; Zhang, S. C. Formation of a stable carbon framework in a MnO yolk-shell sphere to achieve exceptional performance for a Li-ion battery anode. J. Mater. Chem. A 2015, 3, 15591-15597.

38

Zhang, C. B.; Wang, J. G.; Jin, D. D.; Xie, K. Y.; Wei, B. Q. Facile fabrication of MnO/C core-shell nanowires as an advanced anode material for lithium-ion batteries. Electrochim. Acta 2015, 180, 990-997.

39

Hu, H.; Cheng, H. Y.; Liu, Z. F.; Yu, Y. Facile synthesis of carbon spheres with uniformly dispersed MnO nanoparticles for lithium ion battery anode. Electrochim. Acta 2015, 152, 44-52.

40

Sun, B.; Chen, Z. X.; Kim, H. -S.; Ahn, H.; Wang, G. X. MnO/C core-shell nanorods as high capacity anode materials for lithium-ion batteries. J. Power Sources 2011, 196, 3346-3349.

41

Chen, W. -M.; Qie, L.; Shen, Y.; Sun, Y. -M.; Yuan, L. -X.; Hu, X. -L.; Zhang, W. -X.; Huang, Y. -H. Superior lithium storage performance in nanoscaled MnO promoted by N-doped carbon webs. Nano Energy 2013, 2, 412-418.

42

Zhao, Y.; Wei, C.; Sun, S. N.; Wang, L. P.; Xu, Z. J. Reserving interior void space for volume change accommodation: An example of cable-Like MWNTs@SnO2@C composite for superior lithium and sodium storage. Adv. Sci. 2015, 2, 1500097.

43

Zhu, J.; Wang, T.; Fan, F. R.; Mei, L.; Lu, B. A. Atomic-scale control of silicon expansion space as ultrastable battery anodes. ACS Nano 2016, 10, 8243-8251.

44

Deng, Y. F.; Wan, L. N.; Xie, Y.; Qin, X. S.; Chen, G. H. Recent advances in Mn-based oxides as anode materials for lithium ion batteries. RSC Adv. 2014, 4, 23914-23935.

45

Zhou, X. S.; Wan, L. J.; Guo, Y. G. Binding SnO2 nanocrystals in nitrogen-doped graphene sheets as anode materials for lithium-ion batteries. Adv. Mater. 2013, 25, 2152-2157.

46

Jiang, H.; Hu, Y. J.; Guo, S. J.; Yan, C. Y.; Lee, P. S.; Li, C. Z. Rational design of MnO/carbon nanopeapods with internal void space for high-rate and long-life Li-ion batteries. ACS Nano 2014, 8, 6038-6046.

47

Li, H. W.; Yu, H. J.; Zhang, X. F.; Guo, G. N.; Hu, J. H.; Dong, A. G.; Yang, D. Bowl-like 3C-SiC nanoshells encapsulated in hollow graphitic carbon spheres for high-rate lithium-ion batteries. Chem. Mater. 2016, 28, 1179-1186.

48

Jiao, Y. C.; Han, D. D.; Ding, Y.; Zhang, X. F.; Guo, G. N.; Hu, J. H.; Yang, D.; Dong, A. G. Fabrication of three-dimensionally interconnected nanoparticle superlattices and their lithium-ion storage properties. Nat. Commun. 2015, 6, 6420.

49

Xie, D.; Xia, X. H.; Zhong, Y.; Wang, Y. D.; Wang, D. H.; Wang, X. L.; Tu, J. P. Exploring advanced sandwiched arrays by vertical graphene and N-doped carbon for enhanced sodium storage. Adv. Energy Mater. 2017, 7, 1601804.

File
nr-11-2-1135_ESM.pdf (1.9 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 05 May 2017
Revised: 13 June 2017
Accepted: 18 June 2017
Published: 10 August 2017
Issue date: February 2018

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany 2017

Acknowledgements

Acknowledgements

We would like to thank 1000 Plan Professorship for Young Talents, Hundred Talents Program of Chinese Academy of Sciences (CAS), the Fujian Science and Technology Key Project (No. 2016H0043) and Fujian Natural Science Foundation (No. 2017J05030) for financial support.

Return