Journal Home > Volume 11 , Issue 2

Subcellular organelle-specific nanoparticles for simultaneous tumor targeting, imaging, and drug delivery are of enormous interest in cancer therapy. Herein, we report a selective mitochondria-targeting probe 1, which was synthesized by incorporating a triphenyl phosphine with a cyanostilbene and a long alkyl chain moiety. Probe 1 was found to display fluorescence via aggregation-induced emission (AIE). The low molecular-weight cyanostilbene-based probe 1, with and without an anticancer drug, formed a narrow homogeneous nanorod with ca. 110 nm of length or nanoparticles with ca. 20 nm diameter in aqueous media. The self-assembled cyanostilbene nanoparticles (N1) selectively accumulated in the mitochondria of cancer cells and emitted fluorescence. N1 was also able to deliver an anticancer drug, doxorubicin (DOX), to the mitochondria with high efficiency. More importantly, N1 exhibited highly selective cytotoxicity for cancer cells over normal cells. The great potential applications of this self-assembled nanoparticle to biological systems result from its ability to aggregate in the mitochondria. This aggregation led to a significant increase in the generation of intracellular reactive oxygen species and to a decrease in the mitochondrial membrane potential in cancer cells. Furthermore, tumor tissue uptake experiments in mice proposed that the self-assembled N1 had the ability to internalize and deliver the anticancer drug into tumor tissues effectively. Moreover, both N1 and N1-encapsulated doxorubicin (N1-DOX) effectively suppressed tumor growth in a xenograft model in vivo. Taken together, our findings indicate that applications of N1 as a mitochondrial targeting probe, drug delivery platform, and chemotherapeutic agent provide a unique strategy for potential image-guided therapy as well as a site-specific delivery system to cancer cells.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Mitochondria-targeting self-assembled nanoparticles derived from triphenylphosphonium-conjugated cyanostilbene enable site-specific imaging and anticancer drug delivery

Show Author's information Ka Young Kim1,§Hanyong Jin2,§Jaehyeon Park1Sung Ho Jung1Ji Ha Lee1Hyesong Park1Sung Kuk Kim1Jeehyeon Bae2Jong Hwa Jung1( )
Department of Chemistry and Research Institute of Natural SciencesGyeongsang National UniversityJinju52828Republic of Korea
School of PharmacyChung-Ang UniversitySeoul06974Republic of Korea

§Ka Young Kim and Hanyong Jin contributed equally to this work.

Abstract

Subcellular organelle-specific nanoparticles for simultaneous tumor targeting, imaging, and drug delivery are of enormous interest in cancer therapy. Herein, we report a selective mitochondria-targeting probe 1, which was synthesized by incorporating a triphenyl phosphine with a cyanostilbene and a long alkyl chain moiety. Probe 1 was found to display fluorescence via aggregation-induced emission (AIE). The low molecular-weight cyanostilbene-based probe 1, with and without an anticancer drug, formed a narrow homogeneous nanorod with ca. 110 nm of length or nanoparticles with ca. 20 nm diameter in aqueous media. The self-assembled cyanostilbene nanoparticles (N1) selectively accumulated in the mitochondria of cancer cells and emitted fluorescence. N1 was also able to deliver an anticancer drug, doxorubicin (DOX), to the mitochondria with high efficiency. More importantly, N1 exhibited highly selective cytotoxicity for cancer cells over normal cells. The great potential applications of this self-assembled nanoparticle to biological systems result from its ability to aggregate in the mitochondria. This aggregation led to a significant increase in the generation of intracellular reactive oxygen species and to a decrease in the mitochondrial membrane potential in cancer cells. Furthermore, tumor tissue uptake experiments in mice proposed that the self-assembled N1 had the ability to internalize and deliver the anticancer drug into tumor tissues effectively. Moreover, both N1 and N1-encapsulated doxorubicin (N1-DOX) effectively suppressed tumor growth in a xenograft model in vivo. Taken together, our findings indicate that applications of N1 as a mitochondrial targeting probe, drug delivery platform, and chemotherapeutic agent provide a unique strategy for potential image-guided therapy as well as a site-specific delivery system to cancer cells.

Keywords: fluorescence imaging, drug delivery, aggregation-induced emission, mitochondria-targeting, chemotherapy

References(81)

1

Lee, S. J.; Park, K.; Oh, Y. K.; Kwon, S. H.; Her, S.; Kim, I. S.; Choi, K.; Lee, S. J.; Kim, H.; Lee, S. G. et al. Tumor specificity and therapeutic efficacy of photosensitizer-encapsulated glycol chitosan-based nanoparticles in tumor-bearing mice. Biomaterials 2009, 30, 2929-2939.

2

Lee, S. J.; Koo, H.; Jeong, H.; Huh, M. S.; Choi, Y.; Jeong, S. Y.; Byun, Y.; Choi, K.; Kim, K.; Kwon, I. C. Comparative study of photosensitizer loaded and conjugated glycol chitosan nanoparticles for cancer therapy. J. Control. Release 2011, 152, 21-29.

3

Cui, S. S.; Yin, D. Y.; Chen, Y. Q.; Di, Y. F.; Chen, H. Y.; Ma, Y. X.; Achilefu, S.; Gu, Y. Q. In vivo targeted deep-tissue photodynamic therapy based on near-infrared light triggered upconversion nanoconstruct. ACS Nano 2013, 7, 676-688.

4

Meares, C. F.; Chmura, A. J.; Orton, M. S.; Corneillie, T. M.; Whetstone, P. A. Molecular tools for targeted imaging and therapy of cancer. J. Mol. Recogn. 2003, 16, 255-259.

5

Holohan, C.; Van Schaeybroeck, S.; Longley, D. B.; Johnston, P. G. Cancer drug resistance: An evolving paradigm. Nat. Rev. Cancer 2013, 13, 714-726.

6

Rajendran, L.; Knölker, H. J.; Simons, K. Subcellular targeting strategies for drug design and delivery. Nat. Rev. Drug Discov. 2010, 9, 29-42.

7

Sakhrani, N. M.; Padh, H. Organelle targeting: Third level of drug targeting. Drug Des. Devel. Ther. 2013, 7, 585-599.

8

Trachootham, D.; Alexandre, J.; Huang, P. Targeting cancer cells by ROS-mediated mechanisms: A radical therapeutic approach? Nat. Rev. Drug Discov. 2009, 8, 579-591.

9

Gogvadze, V. Targeting mitochondria in fighting cancer. Curr. Pharm. Des. 2011, 17, 4034-4046.

10

Paleos, C. M.; Tsiourvas, D.; Sideratou, Z. Triphenylphosphonium decorated liposomes and dendritic polymers: Prospective second generation drug delivery systems for targeting mitochondria. Mol. Pharm. 2016, 13, 2233-2241.

11

Fonseca, S. B.; Pereira, M. P.; Mourtada, R.; Gronda, M.; Horton, K. L.; Hurren, R.; Minden, M. D.; Schimmer, A. D.; Kelley, S. O. Rerouting chlorambucil to mitochondria combats drug deactivation and resistance in cancer cells. Chem. Biol. 2011, 18, 445-453.

12

Chamberlain, G. R.; Tulumello, D. V.; Kelley, S. O. Targeted delivery of doxorubicin to mitochondria. ACS Chem. Biol. 2013, 8, 1389-1395.

13

Ju, E. G.; Li, Z. H.; Liu, Z.; Ren, J. S.; Qu, X. G. Near-infrared light-triggered drug-delivery vehicle for mitochondria-targeted chemo-photothermal therapy. ACS Appl. Mater. Interfaces 2014, 6, 4364-4370.

14

Millard, M.; Gallagher, J. D.; Olenyuk, B. Z.; Neamati, N. A selective mitochondrial-targeted chlorambucil with remarkable cytotoxicity in breast and pancreatic cancers. J. Med. Chem. 2013, 56, 9170-9179.

15

Marrache, S.; Dhar, S. Engineering of blended nanoparticle platform for delivery of mitochondria-acting therapeutics. Proc. Natl. Acad. Sci. USA 2012, 109, 16288-16293.

16

Qu, Q. Y.; Ma, X.; Zhao, Y. L. Anticancer effect of α-tocopheryl succinate delivered by mitochondria-targeted mesoporous silica nanoparticles ACS Appl. Mater. Interfaces 2016, 8, 34261-34269.

17

Kumar, R.; Shin, W. S.; Sunwoo, K.; Kim, W. Y.; Koo, S.; Bhuniya, S.; Kim, J. S. Small conjugate-based theranostic agents: An encouraging approach for cancer therapy. Chem. Soc. Rev. 2015, 44, 6670-6683.

18

Chen, Z. P.; Li, M.; Zhang, L. J.; He, J. Y.; Wu, L.; Xiao, Y. Y.; Duan, J. A.; Cai, T.; Li, W. D. Mitochondria-targeted drug delivery system for cancer treatment. J. Drug Target. 2016, 24, 492-502.

19

Milane, L.; Trivedi, M.; Singh, A.; Talekar, M.; Amiji, M. Mitochondrial biology, targets, and drug delivery. J. Control. Release 2015, 207, 40-58.

20

Tuo, J.; Xie, Y. Q.; Song, J.; Chen, Y. Z.; Guo, Q.; Liu, X.; Ni, X. M.; Xu, D. L.; Huang, H. Z.; Yin, S. et al. Development of a novel berberine-mediated mitochondria-targeting nano-platform for drug-resistant cancer therapy. J. Mater. Chem. B 2016, 4, 6856-6864.

21

Qu, Q. Y.; Ma, X.; Zhao, Y. L. Targeted delivery of doxorubicin to mitochondria using mesoporous silica nanoparticle nanocarriers. Nanoscale 2015, 7, 16677-16686.

22

Millard, M.; Pathania, D.; Shabaik, Y.; Taheri, L.; Deng, J. X.; Neamati, N. Preclinical evaluation of novel triphenylphosphonium salts with broad-spectrum activity. PLoS One 2010, 5, e13131.

23

Shabaik, Y. H.; Millard, M.; Neamati, N. Mechanistic evaluation of a novel small molecule targeting mitochondria in pancreatic cancer cells. PLoS One 2013, 8, e54346.

24

Wang, X.; Gao, Z. C.; Zhu, J. L.; Gao, Z.; Wang, F. Aggregation induced emission of a cyanostilbene amphiphile as a novel platform for FRET-based ratiometric sensing of mercury ions in water. Polym. Chem. 2016, 7, 5217-5220.

25

An, B. K.; Gierschner, J.; Park, S. Y. π-conjugated cyanostilbene derivatives: A unique self-assembly motif for molecular nanostructures with enhanced emission and transport. Acc. Chem. Res. 2012, 45, 544-554.

26

Zhang, Y. Y.; Li, H. F.; Zhang, G. B.; Xu, X. Y.; Kong, L.; Tao, X. T.; Tian, Y. P.; Yang, J. X. Aggregation-induced emission enhancement and mechanofluorochromic properties of α-cyanostilbene functionalized tetraphenyl imidazole derivatives. J. Mater. Chem. C 2016, 4, 2971-2978.

27

Hong, Y. N.; Lam, J. W. Y.; Tang, B. Z. Aggregation-induced emission. Chem. Soc. Rev. 2011, 40, 5361-5388.

28

Mei, J.; Leung, N. L. C.; Kwok, R. T. K.; Lam, J. W. Y.; Tang, B. Z. Aggregation-induced emission: Together we shine, united we soar! Chem. Rev. 2015, 115, 11718-11940.

29

Chung, J. W.; Yoon, S. J.; An, B. K.; Park, S. Y. High-contrast on/off fluorescence switching via reversible E-Z isomerization of diphenylstilbene containing the α-cyanostilbenic moiety. J. Phys. Chem. C 2013, 117, 11285-11291.

30

Zhu, L. L.; Li, X.; Zhang, Q.; Ma, X.; Li, M. H.; Zhang, H. C.; Luo, Z.; Ågren, H.; Zhao, Y. L. Unimolecular photoconversion of multicolor luminescence on hierarchical self-assemblies. J. Am. Chem. Soc. 2013, 135, 5175-5182.

31

Lu, H. B.; Qiu, L. Z.; Zhang, G. Y.; Ding, A. X.; Xu, W. B.; Zhang, G. B.; Wang, X. H.; Kong, L.; Tian, Y. P.; Yang, J. X. Electrically switchable photoluminescence of fluorescent-molecule-dispersed liquid crystals prepared via photoisomerization-induced phase separation. J. Mater. Chem. C 2014, 2, 1386-1389.

32

Mandal, A. K.; Sreejith, S.; He, T. C.; Maji, S. K.; Wang, X. J.; Ong, S. L.; Joseph, J.; Sun, H. D.; Zhao, Y. L. Three-photon-excited luminescence from unsymmetrical cyanostilbene aggregates: Morphology tuning and targeted bioimaging. ACS Nano 2015, 9, 4796-4805.

33

Zhu, L. L.; Ang, C. Y.; Li, X.; Nguyen, K. T.; Tan, S. Y.; Ågren, H.; Zhao, Y. L. Luminescent color conversion on cyanostilbene-functionalized quantum dots via in-situ photo-tuning. Adv. Mater. 2012, 24, 4020-4024.

34

Aryal, S.; Hu, C. M. J.; Zhang, L. F. Polymer-cisplatin conjugate nanoparticles for acid-responsive drug delivery. ACS Nano 2010, 4, 251-258.

35

Lai, W. F.; Shum, H. C. Hypromellose-graft-chitosan and its polyelectrolyte complex as novel systems for sustained drug delivery. ACS Appl. Mater. Interfaces 2015, 7, 10501-10510.

36

Wang, Y.; Luo, Y. Y.; Zhao, Q.; Wang, Z. J.; Xu, Z. J.; Jia, X. R. An enzyme-responsive nanogel carrier based on PAMAM dendrimers for drug delivery. ACS Appl. Mater. Interfaces 2016, 8, 19899-19906.

37

Yuan, Y. Y.; Liu, B. Self-assembled nanoparticles based on PEGylated conjugated polyelectrolyte and drug molecules for image-guided drug delivery and photodynamic therapy. ACS Appl. Mater. Interfaces 2014, 6, 14903-14910.

38

Zhang, C. Q.; Jin, S. B.; Li, S. L.; Xue, X. D.; Liu, J.; Huang, Y. R.; Jiang, Y. G.; Chen, W. Q.; Zou, G. Z.; Liang, X. J. Imaging intracellular anticancer drug delivery by self-assembly micelles with aggregation-induced emission (AIE micelles). ACS Appl. Mater. Interfaces 2014, 6, 5212-5220.

39

Adams, M. L.; Lavasanifar, A.; Kwon, G. S. Amphiphilic block copolymers for drug delivery. J. Pharm. Sci. 2003, 92, 1343-1355.

40

Seleci, M.; Seleci, D. A.; Ciftci, M.; Demirkol, D. O.; Stahl, F.; Timur, S.; Scheper, T.; Yagci, Y. Nanostructured amphiphilic star-hyperbranched block copolymers for drug delivery. Langmuir 2015, 31, 4542-4551.

41

Kwon, G. S.; Forrest, M. L. . Amphiphilic block copolymer micelles for nanoscale drug delivery. Drug Dev. Res. 2006, 67, 15-22.

42

Wang, Y. X.; Guo, D. S.; Duan, Y. C.; Wang, Y. J.; Liu, Y. Amphiphilic p-sulfonatocalix[4]arene as "drug chaperone" for escorting anticancer drugs. Sci. Rep. 2015, 5, 9019.

43

Maeda, H.; Nakamura, H.; Fang, J. The EPR effect for macromolecular drug delivery to solid tumors: Improvement of tumor uptake, lowering of systemic toxicity, and distinct tumor imaging in vivo. Adv. Drug Deliv. Rev. 2013, 65, 71-79.

44

Peer, D.; Karp, J. M.; Hong, S.; Farokhzad, O. C.; Margalit, R.; Langer, R. Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol. 2007, 2, 751-760.

45

Yu, D. S.; Peng, P.; Dharap, S. S.; Wang, Y.; Mehlig, M.; Chandna, P.; Zhao, H.; Filpula, D.; Yang, K. R.; Borowski, V. et al. Antitumor activity of poly(ethylene glycol)-camptothecin conjugate: The inhibition of tumor growth in vivo. J. Control. Release 2005, 110, 90-102.

46

Xu, L.; Anchordoquy, T. Drug delivery trends in clinical trials and translational medicine: Challenges and opportunities in the delivery of nucleic acid-based therapeutics. J. Pharm. Sci. 2011, 100, 38-52.

47

Malam, Y.; Lim, E. J.; Seifalian, A. M. Current trends in the application of nanoparticles in drug delivery. Curr. Med. Chem. 2011, 18, 1067-1078.

48

Xiao, K.; Li, Y. P.; Luo, J. T.; Lee, J. S.; Xiao, W. W.; Gonik, A. M.; Agarwal, R. G.; Lam, K. S. The effect of surface charge on in vivo biodistribution of PEG-oligocholic acid based micellar nanoparticles. Biomaterials 2011, 32, 3435-3446.

49

Szebeni, J.; Alving, C. R.; Muggia, F. M. Complement activation by cremophor EL as a possible contributor to hypersensitivity to paclitaxel: An in vitro study. J. Natl. Cancer Inst. 1998, 90, 300-306.

50

Kloover, J. S.; den Bakker, M. A.; Gelderblom, H.; van Meerbeeck, J. P. Fatal outcome of a hypersensitivity reaction to paclitaxel: A critical review of premedication regimens. Br. J. Cancer 2004, 90, 304-305.

51

Slowing, I. I.; Vivero-Escoto, J. L.; Wu, C. W.; Lin, V. S. Y. Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. Adv. Drug Deliv. Rev. 2008, 60, 1278-1288.

52

Slowing, I. I.; Trewyn, B. G.; Giri, S.; Lin, V. S. Y. Mesoporous silica nanoparticles for drug delivery and biosensing applications. Adv. Funct. Mater. 2007, 17, 1225-1236.

53

He, Q. J.; Shi, J. L. Mesoporous silica nanoparticle based nano drug delivery systems: Synthesis, controlled drug release and delivery, pharmacokinetics and biocompatibility. J. Mater. Chem. 2011, 21, 5845-5855.

54

Bharti, C.; Nagaich, U.; Pal, A. K.; Gulati, N. Mesoporous silica nanoparticles in target drug delivery system: A review. Int. J. Pharm. Investig. 2015, 5, 124-133.

55

Hu, Q. L.; Gao, M.; Feng, G. X.; Liu, B. Mitochondria-targeted cancer therapy using a light-up probe with aggregation-induced-emission characteristics. Angew. Chem. , Int. Ed. 2014, 53, 14225-14229.

56

Shin, W. S.; Lee, M. G.; Verwilst, P.; Lee, J. H.; Chi, S. G.; Kim, J. S. Mitochondria-targeted aggregation induced emission theranostics: Crucial importance of in situ activation. Chem. Sci. 2016, 7, 6050-6059.

57

Chen, X. Q.; Tian, X. Z.; Shin, I.; Yoon, J. Fluorescent and luminescent probes for detection of reactive oxygen and nitrogen species. Chem. Soc. Rev. 2011, 40, 4783-4804.

58

Pan, Y.; Leifert, A.; Ruau, D.; Neuss, S.; Bornemann, J.; Schmid, G.; Brandau, W.; Simon, U.; Jahnen-Dechent, W. Gold nanoparticles of diameter 1.4 nm trigger necrosis by oxidative stress and mitochondrial damage. Small 2009, 5, 2067-2076.

59

Bae, S. K.; Heo, C. H.; Choi, D. J.; Sen, D.; Cho, E. H.; Cho, B. R.; Kim, H. M. A ratiometric two-photon fluorescent probe reveals reduction in mitochondrial H2S production in Parkinson's disease gene knockout astrocytes. J. Am. Chem. Soc. 2013, 135, 9915-9923.

60

Leung, C. W. J.; Hong, Y. N.; Chen, S. J.; Zhao, E. G.; Lam, J. W. Y.; Tang, B. Z. A Photostable AIE luminogen for specific mitochondrial imaging and tracking, J. Am. Chem. Soc. 2013, 135, 62-65.

61

Chalmers, S.; Caldwell, S. T.; Quin, C.; Prime, T. A.; James, A. M.; Cairns, A. G.; Murphy, M. P.; McCarron, J. G.; Hartley, R. C. Selective uncoupling of individual mitochondria within a cell using a mitochondria-targeted photoactivated protonophore. J. Am. Chem. Soc. 2012, 134, 758-761.

62

Tacar, O.; Sriamornsak, P.; Dass, C. R. Doxorubicin: An update on anticancer molecular action, toxicity and novel drug delivery systems. J. Pharm. Pharmacol. 2013, 65, 157-170.

63

Park, M.; Shin, E.; Won, M.; Kim, J. H.; Go, H.; Kim, H. L.; Ko, J. J.; Lee, K.; Bae, J. FOXL2 interacts with steroidogenic factor-1 (SF-1) and represses SF-1-induced CYP17 transcription in granulosa cells. Mol. Endocrinol. 2010, 24, 1024-1036.

64

Jin, H. Y.; Suh, D. S.; Kim, T. H.; Yeom, J. H.; Lee, K.; Bae, J. IER3 is a crucial mediator of TAp73β-induced apoptosis in cervical cancer and confers etoposide sensitivity. Sci. Rep. 2015, 5, 8367.

65

Kim, J. H.; Yoon, S.; Park, M.; Park, H. O.; Ko, J. J.; Lee, K.; Bae, J. Differential apoptotic activities of wild-type FOXL2 and the adult-type granulosa cell tumor-associated mutant FOXL2 (C134W). Oncogene 2011, 30, 1653-1663.

66

Brandt, R.; Keston, A. S. Synthesis of diacetyldichlorofluorescin: A stable reagent for fluorometric analysis. Anal. Biochem. 1965, 11, 6-9.

67

Ryou, S. M.; Yeom, J. H.; Kang, H. J.; Won, M.; Kim, J. S.; Lee, B.; Seong, M. J.; Ha, N. C.; Bae, J.; Lee, K. Gold nanoparticle-DNA aptamer composites as a universal carrier for in vivo delivery of biologically functional proteins. J. Control. Release. 2014, 196, 287-294.

68

Kim, J. H.; Bae, J. Differential apoptotic and proliferative activities of wild-type FOXL2 and blepharophimosis-ptosis-epicanthus inversus syndrome (BPES)-associated mutant FOXL2 proteins. J. Reprod. Dev. 2014, 60, 14-20.

69

Kim, B.; Yeom, H. R.; Choi, W. Y.; Kim, J. Y.; Yang, C. Synthesis and characterization of a bis-methanofullerene-4-nitro-α-cyanostilbene dyad as a potential acceptor for high-performance polymer solar cells. Tetrahedron 2012, 68, 6696-6700.

70

Sun, H.; Ye, K. Q.; Wang, C. Y.; Qi, H. Y.; Li, F.; Wang, Y. The π-π stacked geometries and association thermodynamics of quinacridone derivatives studied by 1H NMR. J. Phys. Chem. A 2006, 110, 10750-10756.

71

Hunter, C. A.; Lawson, K. R.; Perkins, J.; Urch, C. J. Aromatic interactions. J. Chem. Soc. Perkin Trans. 2 2001, 2, 651-669.

72

Deng, Y. H.; Yuan, W.; Jia, Z.; Liu, G. H- and J-aggregation of fluorene-based chromophores. J. Phys. Chem. B 2014, 118, 14536-14545.

73

Spano, F. C.; Silva, C. H- and J-aggregate behavior in polymeric semiconductors. Annu. Rev. Phys. Chem. 2014, 65, 477-500.

74

Würthner, F.; Kaiser, T. E.; Saha-Möller, C. R. J-aggregates: From serendipitous discovery to supramolecular engineering of functional dye materials. Angew. Chem., Int. Ed. 2011, 50, 3376-3410.

75

Hsieh, C. C.; Cheng, Y. M.; Hsu, C. J.; Chen, K. Y.; Chou, P. T. Spectroscopy and femtosecond dynamics of excited-state proton transfer induced charge transfer reaction. J. Phys. Chem. A 2008, 112, 8323-8332.

76

Hammes-Schiffer, S. When electrons and protons get excited. Proc. Natl. Acad. Sci. USA 2011, 108, 8531-8532.

77

Demchenko, A. P.; Tang, K. C.; Chou, P. T. Excited-state proton coupled charge transfer modulated by molecular structure and media polarization. Chem. Soc. Rev. 2013, 42, 1379-1408.

78

Domcke, W.; Sobolewski, A. L. Unraveling the molecular mechanisms of photoacidity. Science 2003, 302, 1693-1694.

79

Egorin, M. J.; Hildebrand, R. C.; Cimino, E. F.; Bachur, N. R. Cytofluorescence localization of adriamycin and daunorubicin. Cancer Res. 1974, 34, 2243-2245.

80

Smiley, S. T.; Reers, M.; Mottola-Hartshorn, C.; Lin, M.; Chen, A.; Smith, T. W.; Steele, G. D. Jr.; Chen, L. B. Intracellular heterogeneity in mitochondrial membrane potentials revealed by a J-aggregate-forming lipophilic cation JC-1. Proc. Natl. Acad. Sci. USA 1991, 88, 3671-3675.

81

Green, D. R.; McKinnon, P. J. A survivor hits the breaks. Mol. Cell. 2008, 29, 411-412.

File
nr-11-2-1082_ESM.pdf (5.2 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 01 April 2017
Revised: 13 June 2017
Accepted: 22 June 2017
Published: 29 August 2017
Issue date: February 2018

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany 2017

Acknowledgements

Acknowledgements

This work was supported by a grant from NRF (Nos. 2017R1A4A1014595 and 2015R1A2A2A05001400). In addition, this work was partially supported by a grant from the Next-Generation BioGreen 21 Program (SSAC, No. PJ011177022016), Rural development Administration, Korea.

Return