Journal Home > Volume 11 , Issue 6

Construction of macro-materials with highly oriented microstructures and well-connected interfaces between building blocks is significant for a variety of applications. However, it is still challenging to confine the desired structures. Thus, well-defined building blocks would be crucial to address this issue. Herein, we present a facile process based on 1.8 nm Pd nanoclusters (NCs) to achieve centimeter-size assemblages with aligned honeycomb structures, where the diameter of a single tubular moiety is ~4 μm. Layered and disordered porous assemblages were also obtained by modulating the temperature in this system. The reconciled interactions between the NCs were crucial to the assemblages. As a comparison, 14 nm Pd nanoparticles formed only aggregates. This work highlights the approach of confining the size of the building blocks in order to better control the assembly process and improve the stability of the structures.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Three-dimensional macroscale assembly of Pd nanoclusters

Show Author's information Kai WangHaifeng LinBing NiHaoyi LiMuhammad Aurang Zeb Gul SialHaozhou YangJing ZhuangXun Wang( )
Key Lab of Organic Optoelectronics and Molecular EngineeringDepartment of ChemistryTsinghua UniversityBeijing100084China

Abstract

Construction of macro-materials with highly oriented microstructures and well-connected interfaces between building blocks is significant for a variety of applications. However, it is still challenging to confine the desired structures. Thus, well-defined building blocks would be crucial to address this issue. Herein, we present a facile process based on 1.8 nm Pd nanoclusters (NCs) to achieve centimeter-size assemblages with aligned honeycomb structures, where the diameter of a single tubular moiety is ~4 μm. Layered and disordered porous assemblages were also obtained by modulating the temperature in this system. The reconciled interactions between the NCs were crucial to the assemblages. As a comparison, 14 nm Pd nanoparticles formed only aggregates. This work highlights the approach of confining the size of the building blocks in order to better control the assembly process and improve the stability of the structures.

Keywords: porous material, nanocluster, macroscale assembly, honey comb structure

References(32)

1

Deville, S. Freeze-casting of porous biomaterials: Structure, properties and opportunities. Materials 2010, 3, 1913-1927.

2

Mao, L. B.; Gao, H. L.; Yao, H. B.; Liu, L.; Cölfen, H.; Liu, G.; Chen, S. M.; Li, S. K.; Yan, Y. X.; Liu, Y. Y. et al. Synthetic nacre by predesigned matrix-directed mineralization. Science 2016, 354, 107-110.

3

Chen, Y.; Shi, J. L. Mesoporous carbon biomaterials. Sci. China Mater. 2015, 58, 241-257.

4

Yang, S. Y.; Ryu, I.; Kim, H. Y.; Kim, J. K.; Jang, S. K.; Russell, T. P. Nanoporous membranes with ultrahigh selectivity and flux for the filtration of viruses. Adv. Mater. 2006, 18, 709-712.

5

Gao, H. L.; Zhu, Y. B.; Mao, L. B.; Wang, F. C.; Luo, X. S.; Liu, Y. Y.; Lu, Y.; Pan, Z.; Ge, J.; Shen, W. et al. Super-elastic and fatigue resistant carbon material with lamellar multi-arch microstructure. Nat. Commun. 2016, 7, 12920.

6

Qiu, L.; Liu, J. Z.; Chang, S. L. Y.; Wu, Y. Z.; Li, D. Biomimetic superelastic graphene-based cellular monoliths. Nat. Commun. 2012, 3, 1241.

7

Deville, S.; Saiz, E.; Nalla, R. K.; Tomsia, A. P. Freezing as a path to build complex composites. Science 2006, 311, 515-518.

8

Yan, F.; Ding, A. L.; Gironès, M.; Lammertink, R. G. H.; Wessling, M.; Börger, L.; Vilsmeier, K.; Goedel, W. A. Hierarchically structured assembly of polymer microsieves, made by a combination of phase separation micromolding and float-casting. Adv. Mater. 2012, 24, 1551-1557.

9

Fu, Q.; Rahaman, M. N.; Dogan, F.; Bal, B. S. Freeze casting of porous hydroxyapatite scaffolds. I. Processing and general microstructure. J. Biomed. Mater. Res. B. Appl. Biomater. 2008, 86B, 125-135.

10

Li, J. J.; Seok, S. I.; Chu, B. J.; Dogan, F.; Zhang, Q. M.; Wang, Q. Nanocomposites of ferroelectric polymers with TiO2 nanoparticles exhibiting significantly enhanced electrical energy density. Adv. Mater. 2009, 21, 217-221.

11

Han, L. N.; Ye, T. N.; Lv, L. B.; Wang, K. X.; Wei, X.; Li, X. H.; Chen, J. S. Supramolecular nano-assemblies with tailorable surfaces: Recyclable hard templates for engineering hollow nanocatalysts. Sci. China Mater. 2014, 57, 7-12.

12

Desvaux, C.; Amiens, C.; Fejes, P.; Renaud, P.; Respaud, M.; Lecante, P.; Snoeck, E.; Chaudret, B. Multimillimetre-large superlattices of air-stable iron-cobalt nanoparticles. Nat. Mater. 2005, 4, 750-753.

13

Fu, Q.; Ran, G. J.; Xu, W. L. Direct self-assembly of CTAB-capped Au nanotriangles. Nano Res. 2016, 9, 3247-3256.

14

Ni, B.; Wang, X. Chemistry and properties at a sub-nanometer scale. Chem. Sci. 2016, 7, 3978-3991.

15

Wang, C. Y.; Siu, C.; Zhang, J.; Fang, J. Y. Understanding the forces acting in self-assembly and the implications for constructing three-dimensional (3D) supercrystals. Nano Res. 2015, 8, 2445-2466.

16

Wu, Y. E.; Wang, D. S.; Li, Y. D. Understanding of the major reactions in solution synthesis of functional nanomaterials. Sci. China Mater. 2016, 59, 938-996.

17

MacLachlan, M. J.; Manners, I.; Ozin, G. A. New(inter) faces: Polymers and inorganic materials. Adv. Mater. 2000, 12, 675-681.

DOI
18

Gao, H. L.; Xu, L.; Long, F.; Pan, Z.; Du, Y. X.; Lu, Y.; Ge, J.; Yu, S. H. Macroscopic free-standing hierarchical 3D architectures assembled from silver nanowires by ice templating. Angew. Chem. , Int. Ed. 2014, 53, 4561-4566.

19

Butler, M. F. Instability formation and directional dendritic growth of ice studied by optical interferometry. Cryst. Growth Des. 2001, 1, 213-223.

20

Butler, M. F. Growth of solutal ice dendrites studied by optical interferometry. Cryst. Growth Des. 2002, 2, 59-66.

21

Butler, M. F. Freeze concentration of solutes at the ice/ solution interface studied by optical interferometry. Cryst. Growth Des. 2002, 2, 541-548.

22

Deville, S. Freeze-casting of porous ceramics: A review of current achievements and issues. Adv. Eng. Mater. 2008, 10, 155-169.

23

Zhang, H. F.; Hussain, I.; Brust, M.; Butler, M. F.; Rannard, S. P.; Cooper, A. I. Aligned two- and three-dimensional structures by directional freezing of polymers and nanoparticles. Nat. Mater. 2005, 4, 787-793.

24

Nyström, G.; Fernández-Ronco, M. P.; Bolisetty, S.; Mazzotti, M.; Mezzenga, R. Amyloid templated gold aerogels. Adv. Mater. 2016, 28, 472-478.

25

Hu, S.; Liu, H. L.; Wang, P. P.; Wang, X. Inorganic nanostructures with sizes down to 1 nm: A macromolecule analogue. J. Am. Chem. Soc. 2013, 135, 11115-11124.

26

Xia, B. Y.; Wu, H. B.; Yan, Y.; Lou, X. W.; Wang, X. Ultrathin and ultralong single-crystal platinum nanowire assemblies with highly stable electrocatalytic activity. J. Am. Chem. Soc. 2013, 135, 9480-9485.

27

Wang, P. P.; Yang, Y.; Zhuang, J.; Wang, X. Self-adjustable crystalline inorganic nanocoils. J. Am. Chem. Soc. 2013, 135, 6834-6837.

28

Li, W. L.; Lu, K.; Walz, J. Y. Freeze casting of porous materials: Review of critical factors in microstructure evolution. Int. Mater. Rev. 2012, 57, 37-60.

29

Wang, Q.; Jia, W. J.; Liu, B. C.; Dong, A.; Gong, X.; Li, C. Y.; Jing, P.; Li, Y. J.; Xu, G. R.; Zhang, J. Hierarchical structure based on Pd (Au) nanoparticles grafted onto magnetite cores and double layered shells: Enhanced activity for catalytic applications. J. Mater. Chem. A 2013, 1, 12732-12741.

30

Shoaib, A.; Ji, M. W.; Qian, H. M.; Liu, J. J.; Xu, M.; Zhang, J. T. Noble metal nanoclusters and their in situ calcination to nanocrystals: Precise control of their size and interface with TiO2 nanosheets and their versatile catalysis applications. Nano Res. 2016, 9, 1763-1774.

31

Higuchi, K.; Yamamoto, K.; Kajioka, H.; Toiyama, K.; Honda, M.; Orimo, S.; Fujii, H. Remarkable hydrogen storage properties in three-layered Pd/Mg/Pd thin films. J. Alloys Compd. 2002, 330-332, 526-530.

32

Gu, X. J.; Lu, Z. H.; Jiang, H. L.; Akita, T.; Xu, Q. Synergistic catalysis of metal-organic framework-immobilized Au-Pd nanoparticles in dehydrogenation of formic acid for chemical hydrogen storage. J. Am. Chem. Soc. 2011, 133, 11822-11825.

File
12274_2017_1723_MOESM1_ESM.pdf (3.4 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 27 April 2017
Revised: 02 June 2017
Accepted: 10 June 2017
Published: 22 May 2018
Issue date: June 2018

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2017

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NSFC) (Nos. 21431003 and 21521091) and China Ministry of Science and Technology under contract of 2016YFA0202801.

Return