AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Entropy-driven self-assembly of chiral nematic liquid crystalline phases of AgNR@Cu2O hyper branched coaxial nanorods and thickness-dependent handedness transition

Guiqing Cheng1Yu Wang1( )Kun Liu2Jihong Yu1( )
State Key Laboratory of Inorganic Synthesis and Preparative ChemistryCollege of ChemistryJilin University2699 Qianjin StreetChangchun130012China
State Key Laboratory of Supramolecular Structure and MaterialsCollege of ChemistryJilin University2699 Qianjin StreetChangchun130012China
Show Author Information

Graphical Abstract

Abstract

The chiral nematic liquid crystalline phase (CNLCP) of noble metal nanorods induces a strong chiroptical response due to their intrinsic physical and chemical properties. Here, we demonstrate that the formation of CNLCP of Ag nanorods (AgNRs) originates from their bent-shape and is the result of purely entropic effects. The chirality of the liquid crystalline phase of AgNR@Cu2O hyper branched coaxial nanorods (HBCNRs) can be switched from left-handed to right-handed by increasing Cu2O thickness. It is proposed that the increase of coating thickness decreases the curvature of nanorods, which induces variation of the twist constant (K2) and bend elastic constant (K3). The increased thickness also changes the direction of director with respect to the helical axis. In addition, hydrogen bonds can break the CNLCP, which can be attributed to their stronger effection compared to van der Waals forces and electrostatic interactions. In contrast to the variation of coating thickness, the surface morphology, constituents of the hybrid building blocks and polarity of the solvents do not play important roles in the handedness transition of the liquid crystalline phase. Furthermore, the results presented here give insight into the structure–property relationship and our strategy provides guidance for the synthesis of other inorganic chiral suprastructures driven by entropic effects.

Electronic Supplementary Material

Download File(s)
nr-11-2-1018_ESM.pdf (7.1 MB)

References

1

Shopsowitz, K. E.; Qi, H.; Hamad, W. Y.; Maclachlan, M. J. Free-standing mesoporous silica films with tunable chiral nematic structures. Nature 2010, 468, 422–425.

2

Hendry, E.; Carpy, T.; Johnston, J.; Popland, M.; Mikhaylovskiy, R. V.; Lapthorn, A. J.; Kelly, S. M.; Barron, L. D.; Gadegaard, N.; Kadodwala, M. Ultrasensitive detection and characterization of biomolecules using superchiral fields. Nat. Nanotechnol. 2010, 5, 783–787.

3

Kuzyk, A.; Schreiber, R.; Zhang, H.; Govorov, A. O.; Liedl, T.; Liu, N. Reconfigurable 3D plasmonic metamolecules. Nat. Mater. 2014, 13, 862–866.

4

Mitov, M. Cholesteric liquid crystals with a broad light reflection band. Adv. Mater. 2012, 24, 6260–6276.

5

Zhu, Z. N.; Liu, W. J.; Li, Z. T.; Han, B.; Zhou, Y. L.; Gao, Y.; Tang, Z. Y. Manipulation of collective optical activity in one-dimensional plasmonic assembly. ACS Nano 2012, 6, 2326−2332.

6

Li, Z. T.; Zhu, Z. N.; Liu, W. J.; Zhou, Y. L.; Han, B.; Gao, Y.; Tang, Z. Y. Reversible plasmonic circular dichroism of Au nanorod and DNA assemblies. J. Am. Chem. Soc. 2012, 134, 3322−3325.

7

Liu, W. J.; Zhu, Z. N.; Deng, K.; Li, Z. T.; Zhou, Y. L.; Qiu, H. B.; Gao, Y.; Che, S. A.; Tang, Z. Y. Gold nanorod@chiral mesoporous silica core−shell nanoparticles with unique optical properties. J. Am. Chem. Soc. 2013, 135, 9659−9664.

8

Han, B.; Zhu, Z. N.; Li, Z. T.; Zhang, W.; Tang, Z. Y. Conformation modulated optical activity enhancement in chiral cysteine and Au nanorod assemblies. J. Am. Chem. Soc. 2014, 136, 16104−16107.

9

Wu, X. L.; Xu, L. G.; Ma, W.; Liu, L. Q.; Kuang, H.; Kotov, N. A.; Xu, C. L. Propeller-like nanorod-upconversion nanoparticle assemblies with intense chiroptical activity and luminescence enhancement in aqueous phase. Adv. Mater. 2016, 28, 5907−5915.

10

Lv, J. W.; Hou, K.; Ding, D. F.; Wang, D. W.; Han, B.; Gao, X. Q.; Zhao, M.; Shi, L.; Guo, J.; Zheng, Y. L. et al. Gold nanowire chiral ultrathin films with ultrastrong and broadband optical activity. Angew. Chem., Int. Ed. 2017, 56, 5055–5060.

11

Li, S.; Xu, L. G.; Sun, M. Z.; Wu, X. L.; Liu, L. Q.; Kuang, H.; Xu, C. L. Hybrid nanoparticle pyramids for intracellular dual microRNAs biosensing and bioimaging. Adv. Mater. 2017, 29, 1606086.

12

Bailey, J.; Chrysostomou, A.; Hough, J. H.; Gledhill, T. M.; McCall, A.; Clark, S.; Ménard, F.; Tamura, M. Circular polarization in star-formation regions: Implications for biomolecular homochirality. Science 1998, 281, 672–674.

13

Liu, M. H.; Zhang, L.; Wang, T. Y. Supramolecular chirality in self-assembled systems. Chem. Rev. 2015, 115, 7304–7397.

14

Onsager, L. The effects of shape on the interaction of colloidal particles. Ann. N. Y. Acad. Sci. 1949, 51, 627–659.

15

Xu, Z.; Gao, C. Aqueous liquid crystals of graphene oxide. ACS Nano 2011, 5, 2908–2915.

16

Meuer, S.; Oberle, P.; Theato, P.; Tremel, W.; Zentel, R. Liquid crystalline phases from polymer-functionalized TiO2 nanorods. Adv. Mater. 2007, 19, 2073–2078.

17

Lemaire, B. J.; Davidson, P.; Ferré, J.; Jamet, J. P.; Panine, P.; Dozov, I.; Jolivet, J. P. Outstanding magnetic properties of nematic suspensions of goethite (α-FeOOH) nanorods. Phys. Rev. Lett. 2002, 88, 125507.

18

Li, L. S.; Walda, J.; Manna, L.; Alivisatos, A. P. Semiconductor nanorod liquid crystals. Nano Lett. 2002, 2, 557–560.

19

Rai, P. K.; Pinnick, R. A.; Parra-Vasquez, A. N. G.; Davis, V. A.; Schmidt, H. K.; Hauge, R. H.; Smalley, R. E.; Pasquali, M. Isotropic-nematic phase transition of single-walled carbon nanotubes in strong acids. J. Am. Chem. Soc. 2006, 128, 591–595.

20

Kim, J.; de la Cotte, A.; Deloncle, R.; Archambeau, S.; Biver, C.; Cano, J. P.; Lahlil, K.; Boilot, J. P.; Grelet, E.; Gacoin, T. LaPO4 mineral liquid crystalline suspensions with outstanding colloidal stability for electro-optical applications. Adv. Funct. Mater. 2012, 22, 4949–4956.

21

Wang, X. S.; Zou, Y. C.; Zhu, J. R.; Wang, Y. Silver cholesteric liquid crystalline: Shape-dependent assembly and plasmonic chiroptical response. J. Phys. Chem. C 2013, 117, 14197–14205.

22

Dressel, C.; Reppe, T.; Prehm, M.; Brautzsch, M.; Tschierske, C. Chiral self-sorting and amplification in isotropic liquids of achiral molecules. Nat. Chem. 2014, 6, 971–977.

23

Nayani, K.; Chang, R.; Fu, J. X.; Ellis, P. W.; Fernandez- Nieves, A.; Park, J. O.; Srinivasarao, M. Spontaneous emergence of chirality in achiral lyotropic chromonic liquid crystals confined to cylinders. Nat. Commun. 2015, 6, 8067.

24

Cestari, M.; Diez-Berart, S.; Dunmur, D. A.; Ferrarini, A.; de la Fuente, M. R.; Jackson, D. J. B.; Lopez, D. O.; Luckhurst, G. R.; Perez-Jubindo, M. A.; Richardson, R. M. et al. Phase behavior and properties of the liquid-crystal dimer 1'', 7''-bis(4-cyanobiphenyl-4'-yl) heptane: A twist-bend nematic liquid crystal. Phys. Rev. E 2011, 84, 031704.

25

Dozov, I. On the spontaneous symmetry breaking in the mesophases of achiral banana-shaped molecules. Europhys. Lett. 2001, 56, 247–253.

26

Jansze, S. M.; Martínez-Felipe, A.; Storey, J. M. D.; Marcelis, A. T. M.; Imrie, C. T. A twist-bend nematic phase driven by hydrogen bonding. Angew. Chem., Int. Ed. 2015, 54, 643–646.

27

Jiu, J.; Araki, T.; Wang, J.; Nogi, M.; Sugahara, T.; Nagao, S.; Koga, H.; Suganuma, K.; Nakazawa, E.; Hara, M. et al. Facile synthesis of very-long silver nanowires for transparent electrodes. J. Mater. Chem. A 2014, 2, 6326–6330.

28

van der Kooij, F. M.; Lekkerkerker, H. N. W. Formation of nematic liquid crystals in suspensions of hard colloidal platelets. J. Phys. Chem. B 1998, 102, 7829–7832.

29

Dong, X. M.; Kimura, T.; Revol, J. F.; Gray, D. G. Effects of ionic strength on the isotropic-chiral nematic phase transition of suspensions of cellulose crystallites. Langmuir 1996, 12, 2076–2082.

30

Sciacca, B.; Mann, S. A.; Tichelaar, F. D.; Zandbergen, H. W.; van Huis, M. A.; Garnett, E. C. Solution-phase epitaxial growth of quasi-monocrystalline cuprous oxide on metal nanowires. Nano Lett. 2014, 14, 5891–5898.

31

Zhao, Y. X.; Fan, L. L.; Zhang, Y.; Zhao, H.; Li, X. J.; Li, Y. P.; Wen, L.; Yan, Z. F.; Huo, Z. Y. Hyper-branched Cu@Cu2O coaxial nanowires mesh electrode for ultra-sensitive glucose detection. ACS Appl. Mater. Interfaces 2015, 7, 16802–16812.

32

Rej, S.; Wang, H. J.; Huang, M. X.; Hsu, S. C.; Tan, C. S.; Lin, F. C.; Huang, J. S.; Huang, M. H. Facet-dependent optical properties of Pd-Cu2O core–shell nanocubes and octahedra. Nanoscale 2015, 7, 11135–11141.

33

Tabiryan, N.; Serak, S.; Dai, X. M.; Bunning, T. Polymer film with optically controlled form and actuation. Opt. Express 2005, 13, 7442–7448.

34

White, T. J.; Broer, D. J. Programmable and adaptive mechanics with liquid crystal polymer networks and elastomers. Nat. Mater. 2015, 14, 1087–1098.

35

Choi, J. K.; Haynie, B. E.; Tohgha, U.; Pap, L.; Elliott, K. W.; Leonard, B. M.; Dzyuba, S. V.; Varga, K.; Kubelka, J.; Balaz, M. Chirality inversion of CdSe and CdS quantum dots without changing the stereochemistry of the capping ligand. ACS Nano 2016, 10, 3809–3815.

36

Xiang, J.; Shiyanovskii, S. V.; Imrie, C.; Lavrentovich, O. D. Electrooptic response of chiral nematic liquid crystals with oblique helicoidal director. Phys. Rev. Lett. 2014, 112, 217801.

37

Cheng, G. Q.; Di, J. C.; Wang, Y. Chiroptical study of metal@semiconductor-molecule composites: Interaction between cysteine and Ag@Ag3PO4 core–shell hybrid nanorods. J. Phys. Chem. C 2015, 119, 22122–22130.

38

Di Gregorio, M. C.; Ben Moshe, A.; Tirosh, E.; Galantini, L.; Markovich, G. Chiroptical study of plasmon-molecule interaction: The case of interaction of glutathione with silver nanocubes. J. Phys. Chem. C 2015, 119, 17111–17116.

39

Wanger, C. D.; Riggs, W. M.; Davis, L. E.; Moulder, J. F.; Muilenberg, G. E. Handbook of X-Ray Photoelectron Spectroscopy; Perkin-Elmer Corporation: Eden Prairie, MN, USA, 1979.

40

Espinós, J. P.; Morales, J.; Barranco, A.; Caballero, A.; Holgado, J. P.; González-Elipe, A. R. Interface effects for Cu, CuO, and Cu2O deposited on SiO2 and ZrO2. XPS determination of the valence state of copper in Cu/SiO2 and Cu/ZrO2 catalysts. J. Phys. Chem. B 2002, 106, 6921–6929.

41

Brookshier, M. A.; Chusuei, C. C.; Goodman, D. W. Control of CuO particle size on SiO2 by spin coating. Langmuir 1999, 15, 2043–2046.

42

Xu, J. F.; Ji, W.; Shen, Z. X.; Tang, S. H.; Ye, X. R.; Jia, D. Z.; Xin, X. Q. Preparation and characterization of CuO nanocrystals. J. Solid State Chem. 1999, 147, 516–519.

43

Wang, W. Z.; Wang, G. H.; Wang, X. S.; Zhan, Y. J.; Liu, Y. K.; Zheng, C. L. Synthesis and characterization of Cu2O nanowires by a novel reduction route. Adv. Mater. 2002, 14, 67–69.

44

Teo, J. J.; Chang, Y.; Zeng, H. C. Fabrications of hollow nanocubes of Cu2O and Cu via reductive self-assembly of CuO nanocrystals. Langmuir 2006, 22, 7369–7377.

Nano Research
Pages 1018-1028
Cite this article:
Cheng G, Wang Y, Liu K, et al. Entropy-driven self-assembly of chiral nematic liquid crystalline phases of AgNR@Cu2O hyper branched coaxial nanorods and thickness-dependent handedness transition. Nano Research, 2018, 11(2): 1018-1028. https://doi.org/10.1007/s12274-017-1715-z

666

Views

6

Crossref

N/A

Web of Science

7

Scopus

0

CSCD

Altmetrics

Received: 07 April 2017
Revised: 02 June 2017
Accepted: 10 June 2017
Published: 15 August 2017
© Tsinghua University Press and Springer-Verlag GmbH Germany 2017
Return