Journal Home > Volume 11 , Issue 2

Novel hierarchical coral-like Ni-Mo sulfides on Ti mesh (denoted as HC-NiMoS/Ti) were synthesized through facile hydrothermal and subsequent sulfuration processes without any template. These non-precious HC-NiMoS/Ti hybrids were explored as bifunctional catalysts for urea-based overall water splitting, including the anodic urea oxygen evolution reaction (UOR) and cathodic hydrogen evolution reaction (HER). Due to the highly exposed active sites, excellent charge transfer ability, and good synergistic effects from multi-component reactions, the HC-NiMoS/Ti hybrid exhibited superior activity and high stability, and only a cell voltage of 1.59 V was required to deliver 10 mA·cm–2 current density in an electrolyte of 1.0 M KOH with 0.5 M urea.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Hierarchical coral-like NiMoS nanohybrids as highly efficient bifunctional electrocatalysts for overall urea electrolysis

Show Author's information Xiaoxia Wang1Jianmei Wang2Xuping Sun3( )Shuang Wei1Liang Cui1Wenrong Yang2Jingquan Liu1( )
College of Materials Science and EngineeringInstitute for Graphene Applied Technology InnovationQingdao UniversityQingdao266071China
College of ChemistrySichuan UniversityChengdu610064China
School of Life and Environmental SciencesDeakin UniversityGeelong3217VIC, Australia

Abstract

Novel hierarchical coral-like Ni-Mo sulfides on Ti mesh (denoted as HC-NiMoS/Ti) were synthesized through facile hydrothermal and subsequent sulfuration processes without any template. These non-precious HC-NiMoS/Ti hybrids were explored as bifunctional catalysts for urea-based overall water splitting, including the anodic urea oxygen evolution reaction (UOR) and cathodic hydrogen evolution reaction (HER). Due to the highly exposed active sites, excellent charge transfer ability, and good synergistic effects from multi-component reactions, the HC-NiMoS/Ti hybrid exhibited superior activity and high stability, and only a cell voltage of 1.59 V was required to deliver 10 mA·cm–2 current density in an electrolyte of 1.0 M KOH with 0.5 M urea.

Keywords: bifunctional catalysts, urea electrolysis, Ni-Mo sulfide, coral-like, superior activity

References(34)

1

Xiao, C. L.; Li, Y. B.; Lu, X. Y.; Zhao, C. Bifunctional porous NiFe/NiCo2O4/Ni foam electrodes with triple hierarchy and double synergies for efficient whole cell water splitting. Adv. Funct. Mater. 2016, 26, 3515-3523.

2

Zhou, H. Q.; Yu, F.; Sun, J. Y.; He, R.; Wang, Y. M.; Guo, C. F.; Wang, F.; Lan, Y. C.; Ren, Z. F.; Chen, S. Highly active and durable self-standing WS2/graphene hybrid catalysts for the hydrogen evolution reaction. J. Mater. Chem. A 2016, 4, 9472-9476.

3

Yu, L.; Xia, B. Y.; Wang, X.; Lou, X. W. General formation of M-MoS3 (M = Co, Ni) hollow structures with enhanced electrocatalytic activity for hydrogen evolution. Adv. Mater. 2016, 28, 92-97.

4

Sivanantham, A.; Ganesan, P.; Shanmugam, S. Hierarchical NiCo2S4 nanowire arrays supported on Ni foam: An efficient and durable bifunctional electrocatalyst for oxygen and hydrogen evolution reactions. Adv. Funct. Mater. 2016, 26, 4661-4672.

5

Zhu, X. J.; Dou, X. Y.; Dai, J.; An, X. D.; Guo, Y. Q.; Zhang, L. D.; Tao, S.; Zhao, J. Y.; Chu, W. S.; Zeng, X. C. et al. Metallic nickel hydroxide nanosheets give superior electrocatalytic oxidation of urea for fuel cells. Angew. Chem., Int. Ed. 2016, 55, 12465-12469.

6

Wu, M. S.; Ji, R. Y.; Zheng, Y. R. Nickel hydroxide electrode with a monolayer of nanocup arrays as an effective electrocatalyst for enhanced electrolysis of urea. Electrochim. Acta 2014, 144, 194-199.

7

Wang, L.; Li, M. T.; Huang, Z. Y.; Li, Y. M.; Qi, S. T.; Yi, C. H.; Yang, B. L. Ni-WC/C nanocluster catalysts for urea electrooxidation. J. Power Sources 2014, 264, 282-289.

8

Lee, Y.; Suntivich, J.; May, K. J.; Perry, E. E.; Shao-Horn, Y. Synthesis and activities of rutile IrO2 and RuO2 nanoparticles for oxygen evolution in acid and alkaline solutions. J. Phys. Chem. Lett. 2012, 3, 399-404.

9

Tang, C.; Cheng, N. Y.; Pu, Z. H.; Xing, W.; Sun, X. P. NiSe nanowire film supported on nickel foam: An efficient and stable 3D bifunctional electrode for full water splitting. Angew. Chem., Int. Ed. 2015, 54, 9351-9355.

10

Ma, T. Y.; Dai, S.; Jaroniec, M.; Qiao, S. Z. Metal-organic framework derived hybrid Co3O4-carbon porous nanowire arrays as reversible oxygen evolution electrodes. J. Am. Chem. Soc. 2014, 136, 13925-13931.

11

Long, X.; Li, J. K.; Xiao, S.; Yan, K. Y.; Wang, Z. L.; Chen, H. N.; Yang, S. H. A strongly coupled graphene and FeNi double hydroxide hybrid as an excellent electrocatalyst for the oxygen evolution reaction. Angew. Chem., Int. Ed. 2014, 126, 7714-7718.

12

Wang, J. M.; Yang, W. R.; Liu, J. Q. CoP2 nanoparticles on reduced graphene oxide sheets as a super-efficient bifunctional electrocatalyst for full water splitting. J. Mater. Chem. A 2016, 4, 4686-4690.

13

Geng, X. M.; Sun, W. W.; Wu, W.; Chen, B.; Al-Hilo, A.; Benamara, M.; Zhu, H. L.; Watanabe, F.; Cui, J. B.; Chen, T. -P. Pure and stable metallic phase molybdenum disulfide nanosheets for hydrogen evolution reaction. Nat. Commun. 2016, 7, 10672.

14

Yang, N.; Tang, C.; Wang, K. Y.; Du, G.; Asiri, A. M.; Sun, X. P. Iron-doped nickel disulfide nanoarray: A highly efficient and stable electrocatalyst for water splitting. Nano Res. 2016, 9, 3346-3354.

15

Zhou, W. J.; Zhou, Y. C.; Yang, L. J.; Huang, J. L.; Ke, Y. T.; Zhou, K.; Li, L. G.; Chen, S. W. N-doped carbon-coated cobalt nanorod arrays supported on a titanium mesh as highly active electrocatalysts for the hydrogen evolution reaction. J. Mater. Chem. A 2015, 3, 1915-1919.

16

Liao, L.; Wang, S. N.; Xiao, J. J.; Bian, X. J.; Zhang, Y. H.; Scanlon, M. D.; Hu, X. L.; Tang, Y.; Liu, B. H.; Girault, H. H. A nanoporous molybdenum carbide nanowire as an electrocatalyst for hydrogen evolution reaction. Energy Environ. Sci. 2014, 7, 387-392.

17

Li, J. Y.; Xia, Z. M.; Zhou, X. M.; Qin, Y. B.; Ma, Y. Y.; Qu, Y. Q. Quaternary pyrite-structured nickel/cobalt phosphosulfide nanowires on carbon cloth as efficient and robust electrodes for water electrolysis. Nano Res. 2017, 10, 814-825.

18

Peng, S. J.; Li, L. L.; Han, X. P.; Sun, W. P.; Srinivasan, M.; Mhaisalkar, S. G.; Cheng, F. Y.; Yan, Q. Y.; Chen, J.; Ramakrishna, S. Cobalt sulfide nanosheet/graphene/carbon nanotube nanocomposites as flexible electrodes for hydrogen evolution. Angew. Chem., Int. Ed. 2014, 126, 12802-12807.

19

Yu, J.; Li, Q. Q.; Chen, N.; Xu, C. -Y.; Zhen, L.; Wu, J. S.; Dravid, V. P. Carbon-coated nickel phosphide nanosheets as efficient dual-electrocatalyst for overall water splitting. ACS Appl. Mater. Interfaces 2016, 8, 27850-27858.

20

Zhang, G.; Wang, G. C.; Liu, Y.; Liu, H. J.; Qu, J. H.; Li, J. H. Highly active and stable catalysts of phytic acid-derivative transition metal phosphides for full water splitting. J. Am. Chem. Soc. 2016, 138, 14686-14693.

21

Zhang, X.; Liu, S. W.; Zang, Y. P.; Liu, R. R.; Liu, G. Q.; Wang, G. Z.; Zhang, Y. X.; Zhang, H. M.; Zhao, H. J. Co/Co9S8@S, N-doped porous graphene sheets derived from S, N dual organic ligands assembled Co-MOFs as superior electrocatalysts for full water splitting in alkaline media. Nano Energy 2016, 30, 93-102.

22

Tian, J. Q.; Cheng, N. Y.; Liu, Q.; Sun, X. P.; He, Y. Q.; Asiri, A. M. Self-supported NiMo hollow nanorod array: An efficient 3D bifunctional catalytic electrode for overall water splitting. J. Mater. Chem. A 2015, 3, 20056-20059.

23

Chen, W. -F.; Sasaki, K.; Ma, C.; Frenkel, A. I.; Marinkovic, N.; Muckerman, J. T.; Zhu, Y. M.; Adzic, R. R. Hydrogen- evolution catalysts based on non-noble metal nickel- molybdenum nitride nanosheets. Angew. Chem., Int. Ed. 2012, 51, 6131-6135.

24

Guo, J. X.; Zhu, H. F.; Sun, Y. F.; Tang, L.; Zhang, X. Boosting the lithium storage performance of MoS2 with graphene quantum dots. J. Mater. Chem. A 2016, 4, 4783- 4789.

25

Ding, J. B.; Zhou, Y.; Li, Y. G.; Guo, S. J.; Huang, X. Q. MoS2 nanosheet assembling superstructure with a three- dimensional ion accessible site: A new class of bifunctional materials for batteries and electrocatalysis. Chem. Mater. 2016, 28, 2074-2080.

26

Cao, Z. K.; Duan, A. J.; Zhao, Z.; Li, J. M.; Wei, Y. C.; Jiang, G. Y.; Liu, J. A simple two-step method to synthesize the well-ordered mesoporous composite Ti-FDU-12 and its application in the hydrodesulfurization of DBT and 4, 6-DMDBT. J. Mater. Chem. A 2014, 2, 19738-19749.

27

Zhao, C. Y.; Wang, X.; Kong, J. H.; Ang, J. M.; Lee, P. S.; Liu, Z. L.; Lu, X. H. Self-assembly-induced alternately stacked single-layer MoS2 and N-doped graphene: A novel van der Waals heterostructure for lithium-ion batteries. ACS Appl. Mater. Interfaces 2016, 8, 2372-2379.

28

Louie, M. W.; Bell, A. T. An investigation of thin-film Ni-Fe oxide catalysts for the electrochemical evolution of oxygen. J. Am. Chem. Soc. 2013, 135, 12329-12337.

29

King, R. L.; Botte, G. G. Investigation of multi-metal catalysts for stable hydrogen production via urea electrolysis. J. Power Sources 2011, 196, 9579-9584.

30

Yan, W.; Wang, D.; Botte, G. G. Nickel and cobalt bimetallic hydroxide catalysts for urea electro-oxidation. Electrochim. Acta 2012, 61, 25-30.

31

Yan, W.; Wang, D.; Diaz, L. A.; Botte, G. G. Nickel nanowires as effective catalysts for urea electro-oxidation. Electrochim. Acta 2014, 134, 266-271.

32

Guo, B. J.; Yu, K.; Li, H. L.; Song, H. L.; Zhang, Y. Y.; Lei, X.; Fu, H.; Tan, Y. H.; Zhu, Z. Q. Hollow structured micro/nano MoS2 spheres for high electrocatalytic activity hydrogen evolution reaction. ACS Appl. Mater. Interfaces 2016, 8, 5517-5525.

33

Liang, Y. H.; Liu, Q.; Asiri, A. M.; Sun, X. P. Enhanced electrooxidation of urea using NiMoO4·xH2O nanosheet arrays on Ni foam as anode. Electrochim. Acta 2015, 153, 456-460.

34

Mei, L.; Yang, T.; Xu, C.; Zhang, M.; Chen, L. B.; Li, Q. H.; Wang, T. H. Hierarchical mushroom-like CoNi2S4 arrays as a novel electrode material for supercapacitors. Nano Energy 2014, 3, 36-45.

Video
nr-11-2-988_ESM1.mp4
File
nr-11-2-988_ESM2.pdf (2.7 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 22 March 2017
Revised: 09 June 2017
Accepted: 10 June 2017
Published: 04 August 2017
Issue date: February 2018

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany 2017

Acknowledgements

Acknowledgements

This work was supported by Qingdao Innovation Leading Expert Program, Qingdao Basic & Applied Research project (No. 15-9-1-100-jch), and the Qingdao Postdoctoral Application Research Project (No. 40601060003).

Return