Journal Home > Volume 11 , Issue 2

Metal-organic frameworks (MOFs) are self-assembled molecular containers that can encapsulate and stabilize short-lived reaction intermediates. In this study, the Cu-benzene-1, 3, 5-tricarboxylate (BTC) MOF was incorporated in a ZnO/graphene oxide (GO) photocatalytic system by electrostatic interaction, and the obtained assembly showed improved hydrogen evolution activity. Electron spin resonance analysis was used to detect and monitor free radicals in the photocatalytic system, and demonstrated that Cu-BTC MOF could stabilize and extend the lifetime of free radicals, increasing the chance of H· radical recombination to form H2. This work provides a new strategy for designing highly efficient photocatalysts.


menu
Abstract
Full text
Outline
About this article

Photocatalytic H2 evolution improvement for H free-radical stabilization by electrostatic interaction of a Cu-BTC MOF with ZnO/GO

Show Author's information Xifeng ShiJiahui ZhangGuanwei Cui( )Ning DengWen WangQian WangBo Tang( )
College of ChemistryChemical Engineering and Materials ScienceCollaborative Innovation Center of Functionalized Probes for Chemical ImagingKey Laboratory of Molecular and Nano ProbesMinistry of EducationShandong Normal UniversityJinan250014China

Abstract

Metal-organic frameworks (MOFs) are self-assembled molecular containers that can encapsulate and stabilize short-lived reaction intermediates. In this study, the Cu-benzene-1, 3, 5-tricarboxylate (BTC) MOF was incorporated in a ZnO/graphene oxide (GO) photocatalytic system by electrostatic interaction, and the obtained assembly showed improved hydrogen evolution activity. Electron spin resonance analysis was used to detect and monitor free radicals in the photocatalytic system, and demonstrated that Cu-BTC MOF could stabilize and extend the lifetime of free radicals, increasing the chance of H· radical recombination to form H2. This work provides a new strategy for designing highly efficient photocatalysts.

Keywords: photocatalysis, H2 evolution, metal-organic framework, free radical stabilization, electrostatic interaction assembly

References(21)

1

Ishibashi, K.; Fujishima, A.; Watanabe, T.; Hashimoto, K. Detection of active oxidative species in TiO2 photocatalysis using the fluorescence technique. Electrochem. Commun. 2000, 2, 207–210.

2

Xiang, Q. J.; Yu, J. G.; Wong, P. K. Quantitative characterization of hydroxyl radicals produced by various photocatalysts. J. Colloid Interface Sci. 2011, 357, 163–167.

3

Ishibashi, K.; Fujishima, A.; Watanabe, T.; Hashimoto, K. Quantum yields of active oxidative species formed on TiO2 photocatalyst. J. Photochem. Photobiol. A 2000, 134, 139–142.

4

Iwasawa, T.; Hooley, R. J.; Rebek Jr, J. Stabilization of labile carbonyl addition intermediates by a synthetic receptor. Science 2007, 317, 493–496.

5

Yoshizawa, M.; Kusukawa, T.; Fujita, M.; Yamaguchi, K. Ship-in-a-bottle synthesis of otherwise labile cyclic trimers of siloxanes in a self-assembled coordination cage. J. Am. Chem. Soc. 2000, 122, 6311–6312.

6

Cram, D. J.; Tanner, M. E.; Thomas, R. The taming of cyclobutadiene. Angew. Chem., Int. Ed. 1991, 30, 1024–1027.

7

Leung, D. H.; Bergman, R. G.; Raymond, K. N. Highly selective supramolecular catalyzed allylic alcohol isomerization. J. Am. Chem. Soc. 2007, 129, 2746–2747.

8

Fiedler, D.; Bergman, R. G.; Raymond, K. N. Stabilization of reactive organometallic intermediates inside a self- assembled nanoscale host. Angew. Chem., Int. Ed. 2006, 45, 745–748.

9

Mal, P.; Breiner, B.; Rissanen, K.; Nitschke, J. R. White phosphorus is air-stable within a self-assembled tetrahedral capsule. Science 2009, 324, 1697–1699.

10

Liu, Q. -K.; Ma, J. -P.; Dong, Y. -B. Adsorption and separation of reactive aromatic isomers and generation and stabilization of their radicals within cadmium(Ⅱ)-triazole metal-organic confined space in a single-crystal-to-single-crystal fashion. J. Am. Chem. Soc. 2010, 132, 7005–7017.

11

Dreyer, D. R.; Park, S.; Bielawski, C. W.; Ruoff, R. S. The chemistry of graphene oxide. Chem. Soc. Rev. 2010, 39, 228–240.

12

Kim, K. S; Tarakeshwar, P.; Lee J. Y. Molecular clusters of π-systems: Theoretical studies of structures, spectra, and origin of interaction energies. Chem. Rev. 2000, 100, 4145–4186.

13

Riley, K. E.; Pitoňák, M.; Jurečka, P.; Hobza, P. Stabilization and structure calculations for noncovalent interactions in extended molecular systems based on wave function and density functional theories. Chem. Rev. 2010, 110, 5023–5063.

14

Esposito, D. V.; Levin, I.; Moffat, T. P.; Talin, A. A. H2 evolution at Si-based metal–insulator–semiconductor photoelectrodes enhanced by inversion channel charge collection and H spillover. Nat. Mater. 2013, 12, 562–568.

15

Marcano, D. C.; Kosynkin, D. V.; Berlin, J. M.; Sinitskii, A.; Sun, Z. Z.; Slesarev, A.; Alemany, L. B.; Lu, W.; Tour, J. M. Improved synthesis of graphene oxide. ACS Nano 2010, 4, 4806–4814.

16

Wu, D. P.; Gao, Z. Y.; Xu, F.; Chang, J. L.; Tao, W. G.; He, J. J.; Gao, S. Y.; Jiang, K. Hierarchical ZnO aggregates assembled by orderly aligned nanorods for dye-sensitized solar cells. CrystEngComm 2013, 15, 1210–1217.

17

Bhunia, M. K.; Hughes, J. T.; Fettinger, J. C.; Navrotsky, A. Thermochemistry of paddle wheel MOFs: Cu-HKUST-1 and Zn-HKUST-1. Langmuir 2013, 29, 8140–8145.

18

Harvey, S. D.; Eckberg, A. D.; Thallapally, P. K. Evaluation of copper–1, 3, 5-benzenetricarboxylate metal–organic framework (Cu-MOF) as a selective sorbent for Lewis-base analytes. J. Sep. Sci. 2011, 34, 2418–2426.

19

Liang, Z. J.; Marshall, M.; Chaffee, A. L. CO2 Adsorption- based separation by metal organic framework (Cu-BTC) versus zeolite (13X). Energy Fuels 2009, 23, 2785–2789.

20

Makino, K.; Mossoba, M. M.; Riesz, P. Chemical effects of ultrasound on aqueous solutions. Formation of hydroxyl radicals and hydrogen atoms. J. Phys. Chem. 1983, 87, 1369–1377.

21

Küsgens P.; Rose M.; Senkovska I.; Früde H.; Henschel A.; Siegle S.; Kaskel S. Characterization of metal-organic frameworks by water adsorption. Microporous Mesoporous Mater. 2009, 120, 325–330.

Publication history
Copyright
Acknowledgements

Publication history

Received: 17 March 2017
Revised: 08 June 2017
Accepted: 09 June 2017
Published: 29 July 2017
Issue date: February 2018

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany 2017

Acknowledgements

Acknowledgements

This work was supported by the National Basic Research Profgram of China (No. 2013CB933800), the National Natural Science Foundation of China (Nos. 21390411, 21535004, 21227005, and 21507074) and Shandong Provincial Natural Science Foundation, China (Nos. BS2014NJ008 and ZR2014BQ018).

Return