Journal Home > Volume 10 , Issue 12

Earth abundant and economical rock salt (NaCl) particles of different sizes (< 3 μm and 5–20 μm) prepared by high energy mechanical milling were used as water-soluble templates for generation of Si with novel nanoscale architectures via low pressure chemical vapor deposition (LPCVD). Si nanoflakes (SiNF) comprising largely amorphous Si (a-Si) with a small volume fraction of nanocrystalline Si (nc-Si), and Si nanorods (SiNR) composed of a larger volume fraction of crystalline Si (c-Si) and a small volume fraction of a-Si resulted from modification of the NaCl crystals. SiNF yielded first-cycle discharge and charge capacities of ~2, 830 and 2, 175 mAh·g–1, respectively, at a current rate of 50 mA·g–1 with a first-cycle irreversible loss (FIR loss) of ~15%–20%. SiNR displayed first-cycle discharge and charge capacities of ~2, 980 and ~2, 500 mAh·g–1, respectively, at a current rate of 50 mA·g–1 with an FIR loss of ~12%–15%. However, at a current rate of 1 A·g–1, SiNF exhibited a stable discharge capacity of ~810 mAh·g–1 at the end of 250 cycles with a fade rate of ~0.11% loss per cycle, while SiNR showed a stable specific discharge capacity of ~740 mAh·g–1 with a fade rate of ~0.23% loss per cycle. The morphology of the nanostructures and compositions of the different phases/phase of Si influence the performance of SiNF and SiNR, making them attractive anodes for lithium-ion batteries.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Water-soluble-template-derived nanoscale silicon nanoflake and nano-rod morphologies: Stable architectures for lithium-ion battery anodes

Show Author's information Bharat Gattu1Prashanth Hanumantha Jampani2Moni Kanchan Datta2,3Ramalinga Kuruba2Prashant N. Kumta1,2,3,4( )
Department of Chemical and Petroleum EngineeringUniversity of PittsburghPittsburghPA15261USA
Department of Mechanical Engineering and Materials ScienceUniversity of PittsburghPittsburghPA15261USA
Department of BioengineeringUniversity of PittsburghPittsburghPA15261USA
Center for Complex Engineered Multifunctional Materials (CCEMM)University of PittsburghPittsburghPA15261USA

Abstract

Earth abundant and economical rock salt (NaCl) particles of different sizes (< 3 μm and 5–20 μm) prepared by high energy mechanical milling were used as water-soluble templates for generation of Si with novel nanoscale architectures via low pressure chemical vapor deposition (LPCVD). Si nanoflakes (SiNF) comprising largely amorphous Si (a-Si) with a small volume fraction of nanocrystalline Si (nc-Si), and Si nanorods (SiNR) composed of a larger volume fraction of crystalline Si (c-Si) and a small volume fraction of a-Si resulted from modification of the NaCl crystals. SiNF yielded first-cycle discharge and charge capacities of ~2, 830 and 2, 175 mAh·g–1, respectively, at a current rate of 50 mA·g–1 with a first-cycle irreversible loss (FIR loss) of ~15%–20%. SiNR displayed first-cycle discharge and charge capacities of ~2, 980 and ~2, 500 mAh·g–1, respectively, at a current rate of 50 mA·g–1 with an FIR loss of ~12%–15%. However, at a current rate of 1 A·g–1, SiNF exhibited a stable discharge capacity of ~810 mAh·g–1 at the end of 250 cycles with a fade rate of ~0.11% loss per cycle, while SiNR showed a stable specific discharge capacity of ~740 mAh·g–1 with a fade rate of ~0.23% loss per cycle. The morphology of the nanostructures and compositions of the different phases/phase of Si influence the performance of SiNF and SiNR, making them attractive anodes for lithium-ion batteries.

Keywords: silicon, nanoflakes, nanorods, water-soluble template, NaCl

References(55)

1

Tarascon, J. M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359–367.

2

Chan, C. K.; Peng, H. L.; Liu, G.; McIlwrath, K.; Zhang, X. F.; Huggins, R. A.; Cui, Y. High-performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol. 2008, 3, 31–35.

3

Cui, L. -F.; Ruffo, R.; Chan, C. K.; Peng, H. L.; Cui, Y. Crystalline-amorphous core−shell silicon nanowires for high capacity and high current battery electrodes. Nano Lett. 2009, 9, 491–495.

4

Epur, R.; Datta, M. K.; Kumta, P. N. Nanoscale engineered electrochemically active silicon–CNT heterostructures—Novel anodes for Li-ion application. Electrochim. Acta 2012, 85, 680–684.

5

Wang, W.; Epur, R.; Kumta, P. N. Vertically aligned silicon/carbon nanotube (VASCNT) arrays: Hierarchical anodes for lithium-ion battery. Electrochem. Commun. 2011, 13, 429–432.

6

Wang, W.; Kumta, P. N. Nanostructured hybrid silicon/carbon nanotube heterostructures: Reversible high-capacity lithiumion anodes. ACS Nano 2010, 4, 2233–2241.

7

Evanoff, K.; Benson, J.; Schauer, M.; Kovalenko, I.; Lashmore, D.; Ready, W. J.; Yushin, G. Ultra strong silicon-coated carbon nanotube nonwoven fabric as a multifunctional lithium-ion battery anode. ACS Nano 2012, 6, 9837–9845.

8

David, L.; Asok, D.; Singh, G. Synthesis and extreme rate capability of Si–Al–C–N functionalized carbon nanotube spray-on coatings as Li-ion battery electrode. ACS Appl. Mater. Interfaces 2014, 6, 16056–16064.

9

Yao, Y.; McDowell, M. T.; Ryu, I.; Wu, H.; Liu, N.; Hu, L. B.; Nix, W. D.; Cui, Y. Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life. Nano Lett. 2011, 11, 2949–2954.

10

Wu, H.; Chan, G.; Choi, J. W.; Ryu, I.; Yao, Y.; McDowell, M. T.; Lee, S. W.; Jackson, A.; Yang, Y.; Hu, L. B.; Cui, Y. Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control. Nat. Nanotechnol. 2012, 7, 310–315.

11

Song, T.; Xia, J. L.; Lee, J. -H.; Lee, D. H.; Kwon, M. -S.; Choi, J. -M.; Wu, J.; Doo, S. K.; Chang, H.; Park, W. I. et al. Arrays of sealed silicon nanotubes as anodes for lithium ion batteries. Nano Lett. 2010, 10, 1710–1716.

12

Park, M. -H.; Kim, M. G.; Joo, J.; Kim, K.; Kim, J.; Ahn, S.; Cui, Y.; Cho, J. Silicon nanotube battery anodes. Nano Lett. 2009, 9, 3844–3847.

13

Lu, Z. Z.; Wong, T.; Ng, T. -W.; Wang, C. D. Facile synthesis of carbon decorated silicon nanotube arrays as anode material for high-performance lithium-ion batteries. RSC Adv. 2014, 4, 2440–2446.

14

Xu, C. X.; Hao, Q.; Zhao, D. Y. Facile fabrication of a nanoporous Si/Cu composite and its application as a high-performance anode in lithium-ion batteries. Nano Res. 2016, 9, 908–916.

15

Xu, K. Q.; Ben, L. B.; Li, H.; Huang, X. J. Silicon-based nanosheets synthesized by a topochemical reaction for use as anodes for lithium ion batteries. Nano Res. 2015, 8, 2654–2662.

16

Choi, S. H.; Kang, Y. C. Enhanced Li+ storage properties of few-layered MoS2-C composite microspheres embedded with Si nanopowder. Nano Res. 2015, 8, 2492–2502.

17

McSweeney, W.; Geaney, H.; O'Dwyer, C. Metal-assisted chemical etching of silicon and the behavior of nanoscale silicon materials as Li-ion battery anodes. Nano Res. 2015, 8, 1395–1442.

18

Liang, J. W.; Li, X. N.; Zhu, Y. C.; Guo, C.; Qian, Y. T. Hydrothermal synthesis of nano-silicon from a silica sol and its use in lithium ion batteries. Nano Res. 2015, 8, 1497–1504.

19

Ge, M. Y.; Rong, J. P.; Fang, X.; Zhang, A. Y.; Lu, Y. H.; Zhou, C. W. Scalable preparation of porous silicon nanoparticles and their application for lithium-ion battery anodes. Nano Res. 2013, 6, 174–181.

20

Chen, S. Q.; Bao, P. T.; Huang, X. D.; Sun, B.; Wang, G. X. Hierarchical 3D mesoporous silicon@graphene nanoarchitectures for lithium ion batteries with superior performance. Nano Res. 2014, 7, 85–94.

21

Zhou, X. S.; Cao, A. M.; Wan, L. J.; Guo, Y. G. Spin-coated silicon nanoparticle/graphene electrode as a binder-free anode for high-performance lithium-ion batteries. Nano Res. 2012, 5, 845–853.

22

Rong, J. P.; Fang, X.; Ge, M. Y.; Chen, H. T.; Xu, J.; Zhou, C. W. Coaxial Si/anodic titanium oxide/Si nanotube arrays for lithium-ion battery anodes. Nano Res. 2013, 6, 182–190.

23

Epur, R.; Hanumantha, P. J.; Datta, M. K.; Hong, D.; Gattu, B.; Kumta, P. N. A simple and scalable approach to hollow silicon nanotube (h-SiNT) anode architectures of superior electrochemical stability and reversible capacity. J. Mater. Chem. A 2015, 3, 11117–11129.

24

Gattu, B.; Epur, R.; Jampani, P. H.; Kuruba, R.; Datta, M. K.; Kumta, P. N. Silicon-carbon core–shell hollow nanotubular configuration high-performance lithium-ion anodes. The J. Phys. Chem. C 2017, 121, 9662–9671.

25

Wang, B. B.; Jin, P.; Yue, Y. Z.; Ji, S. D.; Li, Y. M.; Luo, H. J. Synthesis of NaCl single crystals with defined morphologies as templates for fabricating hollow nano/ micro-structures. RSC Adv. 2015, 5, 5072–5076.

26

Liu, R.; Yang, S. C.; Wang, F.; Lu, X. G.; Yang, Z. M.; Ding, B. J. Sodium chloride template synthesis of cubic tin dioxide hollow particles for lithium ion battery applications. ACS Appl. Mater. Interfaces 2012, 4, 1537–1542.

27

Xiao, X.; Song, H. B.; Lin, S. Z.; Zhou, Y.; Zhan, X. J.; Hu, Z. M.; Zhang, Q.; Sun, J. Y.; Yang, B.; Li, T. Q. et al. Scalable salt-templated synthesis of two-dimensional transition metal oxides. Nat. Commun. 2016, 7, 11296.

28

Fan, X.; Jiang, X. P.; Wang, W.; Liu, Z. P. Green synthesis of nanoporous Si/C anode using NaCl template with improved cycle life. Mater. Lett. 2016, 180, 109–113.

29

Grass, R. N.; Stark, W. J. Flame synthesis of calcium-, strontium-, barium fluoride nanoparticles and sodium chloride. Chem. Commun. 2005, 1767–1769.

30

Halim, S. C. Application of reactive and partly soluble nanomaterials. Ph. D. Dissertation, Eth Zurich, Zürich, 2008.

31

Scholz, S. M.; Dutta, J.; Hofmann, H.; Hofmeister, H. Raman spectroscopic study of silicon nanopowders. J. Mater. Sci. Technol. 1997, 13, 327–332.

32

Vink, R. L. C.; Barkema, G. T.; van der Weg, W. F. Raman spectra and structure of amorphous Si. Phys. Rev. B 2001, 63, 115210.

33

Parker Jr, J. H.; Feldman, D. W.; Ashkin, M. Raman scattering by silicon and germanium. Phys. Rev. 1967, 155, 712–714.

34

Smit, C.; van Swaaij, R. A. C. M. M.; Donker, H.; Petit, A. M. H. N.; Kessels, W. M. M.; van de Sanden, M. C. M. Determining the material structure of microcrystalline silicon from Raman spectra. J. Appl. Phys. 2003, 94, 3582–3588.

35

Datta, M. K.; Maranchi, J.; Chung, S. J.; Epur, R.; Kadakia, K.; Jampani, P.; Kumta, P. N. Amorphous silicon–carbon based nano-scale thin film anode materials for lithium ion batteries. Electrochim. Acta 2011, 56, 4717–4723.

36

Epur, R.; Ramanathan, M.; Beck, F. R.; Manivannan, A.; Kumta, P. N. Electrodeposition of amorphous silicon anode for lithium ion batteries. Mater. Sci. Eng. B 2012, 177, 1157–1162.

37

Epur, R.; Minardi, L.; Datta, M. K.; Chung, S. J.; Kumta, P. N. A simple facile approach to large scale synthesis of high specific surface area silicon nanoparticles. J. Solid State Chem. 2013, 208, 93–98.

38

Breaux, G. A.; Benirschke, R. C.; Jarrold, M. F. Melting, freezing, sublimation, and phase coexistence in sodium chloride nanocrystals. J. Chem. Phys. 2004, 121, 6502–6507.

39

Kana, N.; Khamlich, S.; Kana, J. B. K.; Maaza, M. Peculiar surface size-effects in nacl nano-crystals. Surf. Rev. Lett. 2013, 20, 1350001.

40

Sang, L. V.; Huong, T. T. T.; Minh, L. N. T. Molecular dynamics simulations of the melting of KCl nanoparticles. Eur. Phys. J. D 2014, 68, 292.

41

Sharma, S.; Sunkara, M. K. Direct synthesis of singlecrystalline silicon nanowires using molten gallium and silane plasma. Nanotechnology 2004, 15, 130–134.

42

Chen, L.; Lu, W.; Lieber, C. M. Semiconductor nanowire growth and integration. In Semiconductor Nanowires: From Next-Generation Electronics to Sustainable Energy; Wei, L.; Jie, X., Eds.; The Royal Society of Chemistry: Cambridge, UK, 2015; pp 1–53.

43

Choi, H. -J. Vapor–liquid–solid growth of semiconductor nanowires. In Semiconductor Nanostructures for Optoelectronic Devices: Processing, Characterization and Applications; Yi, G. -C., Ed.; Springer: Berlin, Heidelberg, 2012; pp 1–36.

DOI
44

Schmidt, V. Silicon nanowires: Synthesis, fundamental issues, and a first device. Ph. D. Dissertation, The Martin Luther University, Halle-Wittenberg, 2006.

45

Conesa-Boj, S.; Dunand, S.; Russo-Averchi, E.; Heiss, M.; Ruffer, D.; Wyrsch, N.; Ballif, C.; Morral, A. F. I. Hybrid axial and radial Si-GaAs heterostructures in nanowires. Nanoscale 2013, 5, 9633–9639.

46

Gattu, B.; Epur, R.; Datta, M. K.; Manivannan, A.; Kumta, P. N. Pulse electrodeposition of amorphous Si film anodes for Li-ion battery. In ECS Meeting Abstracts 2014, MA2014–01, 502, Orlando, FL, 2014.

47

Gattu, B.; Epur, R.; Shanti, P. M.; Jampani, P. H.; Kuruba, R.; Datta, M. K.; Manivannan, A.; Kumta, P. N. Pulsed current electrodeposition of silicon thin films anodes for lithium ion battery applications. Inorganics 2017, 5, 27.

48

Obrovac, M. N.; Christensen, L. Structural changes in silicon anodes during lithium insertion/extraction. Electrochem. Solid-State Lett. 2004, 7, A93–A96.

49

Xu, Q.; Li, J. Y.; Yin, Y. X.; Kong, Y. M.; Guo, Y. G.; Wan, L. J. Nano/micro-structured Si/C anodes with high initial coulombic efficiency in Li-Ion batteries. Chem. —Asian J. 2016, 11, 1205–1209.

50

Wu, L. L.; Yang, J.; Zhou, X. Y.; Zhang, M. F.; Ren, Y. P.; Nie, Y. Silicon nanoparticles embedded in a porous carbon matrix as a high-performance anode for lithium-ion batteries. J. Mater. Chem. A 2016, 4, 11381–11387.

51

Li, W. Y.; Tang, Y. B.; Kang, W. P.; Zhang, Z. Y.; Yang, X.; Zhu, Y.; Zhang, W. J.; Lee, C. S. Core–shell Si/C nanospheres embedded in bubble sheet-like carbon film with enhanced performance as lithium ion battery anodes. Small 2015, 11, 1345–1351.

52

Zhang, Y. C.; You, Y.; Xin, S.; Yin, Y. X.; Zhang, J.; Wang, P.; Zheng, X. S.; Cao, F. F.; Guo, Y. G. Rice huskderived hierarchical silicon/nitrogen-doped carbon/carbon nanotube spheres as low-cost and high-capacity anodes for lithium-ion batteries. Nano Energy 2016, 25, 120–127.

53

Yin, Y. X.; Xin, S.; Wan, L. J.; Li, C. J.; Guo, Y. G. Electrospray synthesis of silicon/carbon nanoporous microspheres as improved anode materials for lithium-ion batteries. J. Phys. Chem. C 2011, 115, 14148–14154.

54

Xu, Q.; Li, J. Y.; Sun, J. K.; Yin, Y. X.; Wan, L. J.; Guo, Y. G. Watermelon-inspired Si/C microspheres with hierarchical buffer structures for densely compacted lithium-ion battery anodes. Adv. Energy Mater. 2017, 7, 1601481.

55

Zhou, X. S.; Wan, L. J.; Guo, Y. G. Electrospun silicon nanoparticle/porous carbon hybrid nanofibers for lithium-ion batteries. Small 2013, 9, 2684–2688.

File
nr-10-12-4284_ESM.pdf (1.4 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 08 January 2017
Revised: 01 June 2017
Accepted: 11 June 2017
Published: 23 August 2017
Issue date: December 2017

Copyright

© Tsinghua University Press and Springer‐Verlag GmbH Germany 2017

Acknowledgements

Acknowledgements

The authors gratefully acknowledge the financial support provided by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies of the U.S. Department of Energy under Contract no. DE-AC02-05CH11231, subcontract no. 6951369, under the Batteries for Advanced Transportation Technologies (BATT) program. The authors also acknowledge the National Science Foundation (Nos. NSF-CBET-0933141 and NSF-CBET-1511390) and partial support of the Ford Foundation. Financial assistances from the Edward R. Weidlein Chair Professorship funds and the Center for Complex Engineered Materials (CCEMM) for partial support of this research are also acknowledged.

Return