Journal Home > Volume 11 , Issue 4

The self-assembling properties, stability, and dynamics of hybrid nanocarriers (gold nanoparticles (AuNPs) functionalized with cysteine-based peptides) in solution are studied through a series of classical molecular dynamics simulations based on a recently parametrized reactive force field. The results reveal, at the atomic level, all the details regarding the peptide adsorption mechanisms, nanoparticle stabilization, aggregation, and sintering. The data confirm and explain the experimental findings and disclose aspects that cannot be scrutinized by experiments. The biomolecules are both chemisorbed and physisorbed; self-interactions of the adsorbates and formation of stable networks of interconnected molecules on the AuNP surfaces limit substrate reconstructions, protect the AuNPs from the action of the solvent, and prevent direct interactions of the gold surfaces. The possibility of agglomeration of the functionalized nanoparticles, compared with the sintering of the bare supports in a water solution, is demonstrated through relatively long simulations and fast steered dynamics. The analysis of the trajectories reveals that the AuNPs were well stabilized by the peptides. This prevented particle sintering and kept the particles far apart; however, part of their chains could form interconnections (crosslinks) between neighboring gold vehicles. The excellent agreement of these results with the literature confirm the reliability of the method and its potential application to the modeling of more complex materials relevant to the biomedical sector.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Dynamics and self-assembly of bio-functionalized gold nanoparticles in solution: Reactive molecular dynamics simulations

Show Author's information Susanna Monti1,2( )Giovanni Barcaro3Luca Sementa3Vincenzo Carravetta3Hans Ågren2,4
CNR-ICCOMInstitute of Chemistry of Organometallic CompoundsPisa56124Italy
KTH Royal Institute of TechnologySchool of BiotechnologyDivision of Theoretical Chemistry and BiologyStockholm, S-10691Sweden
CNR-IPCFInstitute of Chemical and Physical ProcessesPisa56124Italy
Institute of NanotechnologySpectroscopy and Quantum ChemistrySiberian Federal UniversitySvobodny pr. 79660041Krasnoyarsk, Russia

Abstract

The self-assembling properties, stability, and dynamics of hybrid nanocarriers (gold nanoparticles (AuNPs) functionalized with cysteine-based peptides) in solution are studied through a series of classical molecular dynamics simulations based on a recently parametrized reactive force field. The results reveal, at the atomic level, all the details regarding the peptide adsorption mechanisms, nanoparticle stabilization, aggregation, and sintering. The data confirm and explain the experimental findings and disclose aspects that cannot be scrutinized by experiments. The biomolecules are both chemisorbed and physisorbed; self-interactions of the adsorbates and formation of stable networks of interconnected molecules on the AuNP surfaces limit substrate reconstructions, protect the AuNPs from the action of the solvent, and prevent direct interactions of the gold surfaces. The possibility of agglomeration of the functionalized nanoparticles, compared with the sintering of the bare supports in a water solution, is demonstrated through relatively long simulations and fast steered dynamics. The analysis of the trajectories reveals that the AuNPs were well stabilized by the peptides. This prevented particle sintering and kept the particles far apart; however, part of their chains could form interconnections (crosslinks) between neighboring gold vehicles. The excellent agreement of these results with the literature confirm the reliability of the method and its potential application to the modeling of more complex materials relevant to the biomedical sector.

Keywords: nanoparticle, biocompatibility, cross-linking, functionalization, ReaxFF

References(51)

1

Monti, S.; Carravetta, V.; Ågren, H. Simulation of gold functionalization with cysteine by reactive molecular dynamics. J. Phys. Chem. Lett. 2016, 7, 272–276.

2

Monti, S.; Carravetta, V.; Ågren, H. Decoration of gold nanoparticles with cysteine in solution: Reactive molecular dynamics simulations. Nanoscale 2016, 8, 12929–12938.

3

Monti, S.; Carravetta, V.; Ågren, H. Theoretical study of the adsorption mechanism of cystine on Au(110) in aqueous solution. Small 2016, 12, 6134–6143.

4

Di Felice, R.; Selloni, A. Adsorption modes of cysteine on Au(111): Thiolate, amino-thiolate, disulfide. J. Chem. Phys. 2004, 120, 4906–4914.

5

Di Felice, R.; Selloni, A.; Molinari, E. DFT study of cysteine adsorption on Au(111). J. Phys. Chem. B 2003, 107, 1151–1156.

6

Di Felice, R.; Corni, S. Simulation of peptide-surface recognition. J. Phys. Chem. Lett. 2011, 2, 1510–1519.

7

Yang, X.; Yang, M. X.; Pang, B.; Vara, M.; Xia, Y. N. Gold nanomaterials at work in biomedicine. Chem. Rev. 2015, 115, 10410–10488.

8

Falamas, A.; Tosa, N.; Tosa, V. Dynamics of laser excited colloidal gold nanoparticles functionalized with cysteine derivatives. J. Quant. Spectrosc. Radiat. Transfer 2015, 162, 207–212.

9

Fratila, R. M.; Mitchell, S. G.; del Pino, P.; Grazu, V.; de la Fuente, J. M. Strategies for the biofunctionalization of gold and iron oxide nanoparticles. Langmuir 2014, 30, 15057–15071.

10

Tadepalli, S.; Kuang, Z. F.; Jiang, Q. S.; Liu, K. K.; Fisher, M. A.; Morrissey, J. J.; Kharasch, E. D.; Slocik, J. M.; Naik, R. R.; Singamaneni, S. Peptide functionalized gold nanorods for the sensitive detection of a cardiac biomarker using plasmonic paper devices. Sci. Rep. 2015, 5, 16206.

11

Raj, V.; Vijayan, A. N.; Joseph, K. Cysteine capped gold nanoparticles for naked eye detection of E. coli bacteria in UTI patients. Sens. Bio-Sensing Res. 2015, 5, 33–36.

12

Miao, C. C.; Zhang, A. M.; Xu, Y. N.; Chen, S.; Ma, F. M.; Huang, C. S.; Jia, N. Q. An ultrasensitive electrochemiluminescence sensor for detecting diphenhydramine hydrochloride based on L-cysteine-functionalized multi-walled carbon nanotubes/gold nanoparticles nanocomposites. Sens. Actuators B Chem. 2015, 213, 5–11.

13

An, D. Y.; Su, J. G.; Weber, J. K.; Gao, X. Y.; Zhou, R. H.; Li, J. Y. A peptide-coated gold nanocluster exhibits unique behavior in protein activity inhibition. J. Am. Chem. Soc. 2015, 137, 8412–8418.

14

Sudeep, P. K.; Joseph, S. T. S.; Thomas, K. G. Selective detection of cysteine and glutathione using gold nanorods. J. Am. Chem. Soc. 2005, 127, 6516–6517.

15

Fajín, J. L. C.; Gomes, J. R. B.; Cordeiro, M. N. D. S. DFT study of the adsorption of D-(L-)cysteine on flat and chiral stepped gold surfaces. Langmuir 2013, 29, 8856–8864.

16

Chapman, C. R. L.; Ting, E. C. M.; Kereszti, A.; Paci, I. Self-assembly of cysteine dimers at the gold surface: A computational study of competing interactions. J. Phys. Chem. C 2013, 117, 19426–19435.

17

Jing, C. Y.; Fang, Y. Experimental (SERS) and theoretical (DFT) studies on the adsorption behaviors of L-cysteine on gold/silver nanoparticles. Chem. Phys. 2007, 332, 27–32.

18

Liu, W. L.; Li, C.; Tang, L.; Tong, A. Y.; Gu, Y.; Cai, R.; Zhang, L.; Zhang, Z. Q. Nanopore array derived from L-cysteine oxide/gold hybrids: Enhanced sensing platform for hydroquinone and catechol determination. Electrochim. Acta 2013, 88, 15–23.

19

Shin, T.; Kim, K. -N.; Lee, C. -W.; Shin, S. K.; Kang, H. Self-assembled monolayer of L-cysteine on Au(111): Hydrogen exchange between zwitterionic L-cysteine and physisorbed water. J. Phys. Chem. B 2003, 107, 11674–11681.

20

Zhao, Y. X.; Zhou, F.; Zhou, H. C.; Su, H. B. The structural and bonding evolution in cysteine-gold cluster complexes. Phys. Chem. Chem. Phys. 2013, 15, 1690–1698.

21

Munro, C. J.; Hughes, Z. E.; Walsh, T. R.; Knecht, M. R. Peptide sequence effects control the single pot reduction, nucleation, and growth of Au nanoparticles. J. Phys. Chem. C 2016, 120, 18917–18924.

22

Hughes, Z. E.; Walsh, T. R. Non-covalent adsorption of amino acid analogues on noble-metal nanoparticles: Influence of edges and vertices. Phys. Chem. Chem. Phys. 2016, 18, 17525–17533.

23

Bedford, N. M.; Hughes, Z. E.; Tang, Z. H.; Li Y.; Briggs, B. D.; Ren, Y.; Swihart, M. T.; Petkov, V. G.; Naik, R. R.; Knecht, M. R. et al. Sequence-dependent structure/function relationships of catalytic peptide-enabled gold nanoparticles generated under ambient synthetic conditions. J. Am. Chem. Soc. 2016, 138, 540–548.

24

Wright, L. B.; Palafox-Hernandez, J. P.; Rodger, P. M.; Corni, S.; Walsh, T. R. Facet selectivity in gold binding peptides: Exploiting interfacial water structure. Chem. Sci. 2015, 6, 5204–5214.

25

Chen, G. C.; Xie, Y. S.; Peltier, R.; Lei, H. P.; Wang, P.; Chen, J.; Hu, Y.; Wang, F.; Yao, X.; Sun, H. Y. Peptidedecorated gold nanoparticles as functional nano-capping agent of mesoporous silica container for targeting drug delivery. ACS Appl. Mater. Interfaces 2016, 8, 11204–11209.

26

Hughes, Z. E.; Nguyen, M. A.; Li, Y.; Swihart, M. T.; Walsh, T. R.; Knecht, M. R. Elucidating the influence of materials-binding peptide sequence on Au surface interactions and colloidal stability of Au nanoparticles. Nanoscale 2017, 9, 421–432.

27

Briggs, B. D.; Palafox-Hernandez, J. P.; Li, Y.; Lim, C. -K.; Woehl, T. J.; Bedford, N. M.; Seifert, S.; Swihart, M. T.; Prasad P. N.; Walsh, T. R. et al. Toward a modular multi-material nanoparticle synthesis and assembly strategy via bionanocombinatorics: Bifunctional peptides for linking Au and Ag nanomaterials. Phys. Chem. Chem. Phys. 2016, 18, 30845–30856.

28

Tofanello, A.; Miranda, É. G. A.; Dias, I. W. R.; Lanfredi, A. J. C.; Arantes, J. T.; Juliano, M. A.; Nantes, I. L. pH-dependent synthesis of anisotropic gold nanostructures by bioinspired cysteine-containing peptides. ACS Omega 2016, 1, 424–434.

29

Rai, M.; Ingle, A. P.; Gupta, I.; Brandelli, A. Bioactivity of noble metal nanoparticles decorated with biopolymers and their application in drug delivery. Int. J. Pharm. 2015, 496, 159–172.

30

Iqbal, M.; Zafar, N.; Fessi, H.; Elaissari, A. Double emulsion solvent evaporation techniques used for drug encapsulation. Int. J. Pharm. 2015, 496, 173–190.

31

Goyal, R.; Macri, L. K.; Kaplan, H. M.; Kohn, J. Nanoparticles and nanofibers for topical drug delivery. J. Control. Release 2016, 240, 77–92.

32

Scarì, G.; Porta, F.; Fascio, U.; Avvakumova, S.; Dal Santo, V.; De Simone, M.; Saviano, M.; Leone, M.; Del Gatto, A.; Pedone, C. et al. Gold nanoparticles capped by a GCcontaining peptide functionalized with an RGD motif for integrin targeting. Bioconjugate Chem. 2012, 23, 340–349.

33

Porta, F.; Speranza, G.; Krpetic, Ž.; Dal Santo, V.; Francescato, P.; Scarì, G. S. Gold nanoparticles capped by peptides. Mater. Sci. Eng. B 2007, 140, 187–194.

34

Krpetic, Ž.; Nativo, P.; Porta, F.; Brust, M. A multidentate peptide for stabilization and facile bioconjugation of gold nanoparticles. Bioconjugate Chem. 2009, 20, 619–624.

35

Aili, D.; Selegård, R.; Baltzer, L.; Enander, K.; Liedberg, B. Colorimetric protein sensing by controlled assembly of gold nanoparticles functionalized with synthetic receptors. Small 2009, 5, 2445–2452.

36

Chen, P.; Selegård, R.; Ailic, D.; Liedberg, B. Peptide functionalized gold nanoparticles for colorimetric detection of matrilysin (MMP–7) activity. Nanoscale 2013, 5, 8973–8976.

37

Li, X.; Carravetta, V.; Li, C.; Monti, S.; Rinkevicius, Z.; Ågren, H. Optical properties of gold nanoclusters functionalized with a small organic compound: Modeling by an integrated quantum-classical approach. J. Chem. Theory Comput. 2016, 12, 3325–3339.

38

Zgarbová, M.; Otyepka, M.; Šponer, J.; Mládek, A.; Banáš, P.; Cheatham III, T. E.; Jurecka, P. Refinement of the Cornell et al. nucleic acids force field based on reference quantum chemical calculations of glycosidic torsion profiles. J. Chem. Theory Comput. 2011, 7, 2886–2902.

39

Case, D. A.; Darden, T. A.; Iii, T, E, C.; Simmerling, C. L.; Wang, J.; Duke, E. H. M.; Luo, R.; Walker, R. C.; Zhang, W.; Merz, K. M. et al. Amber 12; University of California: San Francisco, CA, 2012.

40

Monti, S.; Corozzi, A.; Fristrup, P.; Joshi, K. L.; Shin, Y. K.; Oelschlaeger, P.; van Duin, A. C. T.; Barone, V. Exploring the conformational and reactive dynamics of biomolecules in solution using an extended version of the glycine reactive force field. Phys. Chem. Chem. Phys. 2013, 15, 15062–15077.

41

Berendsen, H. J. C.; Postma, J. P. M.; Van Gunsteren, W. F.; DiNola, A.; Haak, J. R. Molecular dynamics with coupling to an external bath. J. Chem. Phys. 1984, 81, 3684–3690.

42

Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 1995, 117, 1–19.

43

Tour, J. M.; Kozaki, M.; Seminario, J. M. Molecular scale electronics: A synthetic/computational approach to digital computing. J. Am. Chem. Soc. 1998, 120, 8486–8493.

44

Miao, L.; Seminario, J. M. Molecular dynamics simulations of the vibrational signature transfer from a glycine peptide chain to nanosized gold clusters. J. Phys. Chem. C 2007, 111, 8366–8371.

45

Salomon-Ferrer, R.; Case, D. A.; Walker, R. C. An overview of the amber biomolecular simulation package. Comput. Mol. Sci. 2013, 3, 198–210.

46

Kumar, N.; Seminario, J. M. Design of nanosensors for fissile materials in nuclear waste water. J. Phys. Chem. C 2013, 117, 24033–24041.

47

Höffling, B.; Ortmann, F.; Hannewald, K.; Bechstedt, F. Single cysteine adsorption on Au(110): A first-principles study. Phys. Rev. B 2010, 81, 045407.

48

Zeng, P.; Zajac, S.; Clapp, P. C.; Rifkin, J. A. Nanoparticle sintering simulations. Mater. Sci. Eng. A 1998, 252, 301–306.

49

Koparde, V. N.; Cummings, P. T. Molecular dynamics simulation of titanium dioxide nanoparticle sintering. J. Phys. Chem. B 2005, 109, 24280–24287.

50

Koparde, V. N.; Cummings, P. T. Phase transformations during sintering of titania nanoparticles. ACS Nano 2008, 2, 1620–1624.

51

Dutta, A. Kinetics of neck formation during nanoparticle sintering: Approach of dimensionality reduction. Rev. Adv. Mater. Sci. 2014, 39, 25–33.

Video
12274_2017_1704_MOESM2_ESM.avi
File
12274_2017_1704_MOESM1_ESM.pdf (2.6 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 12 April 2017
Revised: 06 June 2017
Accepted: 08 June 2017
Published: 19 March 2018
Issue date: April 2018

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany 2017

Acknowledgements

Acknowledgements

S. M. is grateful to Adri C. T. van Duin for the stand–alone version of ReaxFF, for his support and collaboration. We acknowledge computational resources provided by the CINECA consortium (Grant ISCRA 2016 SINGOLD).

Return