Journal Home > Volume 11 , Issue 6

The emergence and establishment of new techniques for material fabrication are of fundamental importance in the development of materials science. Thus, we herein report a general synthetic strategy for the preparation of monolayer graphene. This novel synthetic method is based on the direct solid-state pyrolytic conversion of a sodium carboxylate, such as sodium gluconate or sodium citrate, into monolayer graphene in the presence of Na2CO3. In addition, gram-scale quantities of the graphene product can be readily prepared in several minutes. Analysis using Raman spectroscopy and atomic force microscopy clearly demonstrates that the pyrolytic graphene is composed of a monolayer with an average thickness of ~0.50 nm. Thus, the present pyrolytic conversion can overcome the issue of the low monolayer contents (i.e., 1 wt.%–12 wt.%) obtained using exfoliation methods in addition to the low yields of chemical vapor deposition methods. We expect that this novel technique may be suitable for application in the preparation of monolayer graphene materials for batteries, supercapacitors, catalysts, and sensors.

File
12274_2017_1703_MOESM1_ESM.pdf (1.7 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 05 April 2017
Revised: 27 May 2017
Accepted: 08 June 2017
Published: 22 May 2018
Issue date: June 2018

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2017

Acknowledgements

Acknowledgements

The authors gratefully thank the National Natural Science Foundation of China (No. 21371023) and National Key Basic Research Program of China (No. 2015CB251100).

Return