Journal Home > Volume 11 , Issue 2

Lipids exhibit an extraordinary polymorphism in self-assembled mesophases, with lamellar phases as the most relevant biological representative. To mimic lipid lamellar phases with amphiphilic designer peptides, seven systematically varied short peptides were engineered. Indeed, four peptide candidates (V4D, V4WD, V4WD2, I4WD2) readily self-assembled into lamellae in aqueous solution. Small-angle X-ray scattering (SAXS) patterns revealed ordered lamellar structures with a repeat distance of ~ 4–5 nm. Transmission electron microscopy (TEM) images confirmed the presence of stacked sheets. Two derivatives (V3D and V4D2) remained as loose aggregates dispersed in solution; one peptide (L4WD2) formed twisted tapes with internal lamellae and an antiparallel β-type monomer alignment. To understand the interaction of peptides with lipids, they were mixed with phosphatidylcholines. Low peptide concentrations (1.1 mM) induced the formation of a heterogeneous mixture of vesicular structures. Large multilamellar vesicles (MLV, d-spacing ~ 6.3 nm) coexisted with oligo- or unilamellar vesicles (~ 50 nm in diameter) and bicelle-like structures (~ 45 nm length, ~ 18 nm width). High peptide concentrations (11 mM) led to unilamellar vesicles (ULV, diameter ~ 260–280 nm) with a homogeneous mixing of lipids and peptides. SAXS revealed the temperature-dependent fine structure of these ULVs. At 25 ℃ the bilayer is in a fully interdigitated state (headgroup-to-headgroup distance dHH ~ 2.9 nm), whereas at 50 ℃ this interdigitation opens up (dHH ~ 3.6 nm). Our results highlight the versatility of self-assembled peptide superstructures. Subtle changes in the amino acid composition are key design elements in creating peptide- or lipidpeptide nanostructures with richness in morphology similar to that of naturally occurring lipids.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Peptide self-assembly into lamellar phases and the formation of lipid-peptide nanostructures

Show Author's information Karin Kornmueller1Bernhard Lehofer1Gerd Leitinger2Heinz Amenitsch3Ruth Prassl1( )
Institute of BiophysicsMedical University of Graz, BioTechMed-GrazGraz8010Austria
Institute of Cell Biology, Histology and Embryology, Research Unit Electron Microscopic TechniquesMedical University of GrazGraz8010Austria
Institute of Inorganic ChemistryGraz University of TechnologyGraz8010Austria

Abstract

Lipids exhibit an extraordinary polymorphism in self-assembled mesophases, with lamellar phases as the most relevant biological representative. To mimic lipid lamellar phases with amphiphilic designer peptides, seven systematically varied short peptides were engineered. Indeed, four peptide candidates (V4D, V4WD, V4WD2, I4WD2) readily self-assembled into lamellae in aqueous solution. Small-angle X-ray scattering (SAXS) patterns revealed ordered lamellar structures with a repeat distance of ~ 4–5 nm. Transmission electron microscopy (TEM) images confirmed the presence of stacked sheets. Two derivatives (V3D and V4D2) remained as loose aggregates dispersed in solution; one peptide (L4WD2) formed twisted tapes with internal lamellae and an antiparallel β-type monomer alignment. To understand the interaction of peptides with lipids, they were mixed with phosphatidylcholines. Low peptide concentrations (1.1 mM) induced the formation of a heterogeneous mixture of vesicular structures. Large multilamellar vesicles (MLV, d-spacing ~ 6.3 nm) coexisted with oligo- or unilamellar vesicles (~ 50 nm in diameter) and bicelle-like structures (~ 45 nm length, ~ 18 nm width). High peptide concentrations (11 mM) led to unilamellar vesicles (ULV, diameter ~ 260–280 nm) with a homogeneous mixing of lipids and peptides. SAXS revealed the temperature-dependent fine structure of these ULVs. At 25 ℃ the bilayer is in a fully interdigitated state (headgroup-to-headgroup distance dHH ~ 2.9 nm), whereas at 50 ℃ this interdigitation opens up (dHH ~ 3.6 nm). Our results highlight the versatility of self-assembled peptide superstructures. Subtle changes in the amino acid composition are key design elements in creating peptide- or lipidpeptide nanostructures with richness in morphology similar to that of naturally occurring lipids.

Keywords: transmission electron microscopy (TEM), nanostructures, amphiphilic designer peptides, lipids, lamellae, small-angle X-ray scattering (SAXS)

References(52)

1

van Meer, G.; de Kroon, A. I. P. M. Lipid map of the mammalian cell. J. Cell Sci. 2011, 124, 5-8.

2

van Meer, G.; Voelker, D. R.; Feigenson, G. W. Membrane lipids: Where they are and how they behave. Nat. Rev. Mol. Cell Biol. 2008, 9, 112-124.

3

Tardieu, A.; Luzzati, V.; Reman, F. C. Structure and polymorphism of the hydrocarbon chains of lipids: A study of lecithin-water phases. J. Mol. Biol. 1973, 75, 711-718, IN17-IN19, 719-733.

4

Luzzati, V.; Husson, F. The structure of the liquid-crystalline phases of lipid-water systems. J. Cell Biol. 1962, 12, 207-219.

5

Luzzati, V.; Spegt, P. A. Polymorphism of lipids. Nature 1967, 215, 701-704.

6

Zhao, X. B.; Pan, F.; Xu, H.; Yaseen, M.; Shan, H. H.; Hauser, C. A. E.; Zhang, S. G.; Lu, J. R. Molecular self-assembly and applications of designer peptide amphiphiles. Chem. Soc. Rev. 2010, 39, 3480-3498.

7

Khoe, U.; Yang, Y. L.; Zhang, S. G. Self-assembly of nanodonut structure from a cone-shaped designer lipid-like peptide surfactant. Langmuir 2009, 25, 4111-4114.

8

Hamley, I. W. Self-assembly of amphiphilic peptides. Soft Matter 2011, 7, 4122-4138.

9

Dehsorkhi, A.; Castelletto, V.; Hamley, I. W. Self-assembling amphiphilic peptides. J. Pept. Sci. 2014, 20, 453-467.

10

Han, S. Y.; Cao, S. S.; Wang, Y. M.; Wang, J. Q.; Xia, D. H.; Xu, H.; Zhao, X. B.; Lu, J. R. Self-assembly of short peptide amphiphiles: The cooperative effect of hydrophobic interaction and hydrogen bonding. Chem. —Eur. J. 2011, 17, 13095-13102.

11

Kornmueller, K.; Letofsky-Papst, I.; Gradauer, K.; Mikl, C.; Cacho-Nerin, F.; Leypold, M.; Keller, W.; Leitinger, G.; Amenitsch, H.; Prassl, R. Tracking morphologies at the nanoscale: Self-assembly of an amphiphilic designer peptide into a double helix superstructure. Nano Res. 2015, 8, 1822-1833.

12

Zhao, Y. R.; Deng, L.; Wang, J. Q.; Xu, H.; Lu, J. R. Solvent controlled structural transition of KI4K self-assemblies: From nanotubes to nanofibrils. Langmuir 2015, 31, 12975-12983.

13

Zhao, Y. R.; Wang, J. Q.; Deng, L.; Zhou, P.; Wang, S. J.; Wang, Y. T.; Xu, H.; Lu, J. R. Tuning the self-assembly of short peptides via sequence variations. Langmuir 2013, 29, 13457-13464.

14

Cenker, Ç. Ç.; Bomans, P. H. H.; Friedrich, H.; Dedeoğlu, B.; Aviyente, V.; Olsson, U.; Sommerdijk, N. A. J. M.; Bucak, S. Peptide nanotube formation: A crystal growth process. Soft Matter 2012, 8, 7463-7470.

15

Hauser, C. A. E.; Deng, R. S.; Mishra, A.; Loo, Y.; Khoe, U.; Zhuang, F.R.; Cheong, D. W.; Accardo, A.; Sullivan, M. B.; Riekel, C. et al. Natural tri-to hexapeptides self-assemble in water to amyloid β-type fiber aggregates by unexpected α-helical intermediate structures. Proc. Natl. Acad. Sci. USA 2011, 108, 1361-1366.

16

Yao, Y.; Xue, M.; Chen, J. Z.; Zhang, M. M.; Huang, F. H. An amphiphilic pillar[5]arene: Synthesis, controllable self-assembly in water, and application in calcein release and TNT adsorption. J. Am. Chem. Soc. 2012, 134, 15712-15715.

17

Yu, G. C.; Ma, Y. J.; Han, C. Y.; Yao, Y.; Tang, G. P.; Mao, Z. W.; Gao, C. Y.; Huang, F. H. A sugar-functionalized amphiphilic pillar[5]arene: Synthesis, self-assembly in water, and application in bacterial cell agglutination. J. Am. Chem. Soc. 2013, 135, 10310-10313.

18

Zhao, X. J.; Nagai, Y.; Reeves, P. J.; Kiley, P.; Khorana, H. G.; Zhang, S. G. Designer short peptide surfactants stabilize G protein-coupled receptor bovine rhodopsin. Proc. Natl. Acad. Sci. USA 2006, 103, 17707-17712.

19

Matsumoto, K.; Vaughn, M.; Bruce, B. D.; Koutsopoulos, S.; Zhang, S. G. Designer peptide surfactants stabilize functional photosystem-I membrane complex in aqueous solution for extended time. J. Phys. Chem. B 2009, 113, 75-83.

20

Ge, B. S.; Yang, F.; Yu, D. Y.; Liu, S.; Xu, H. Designer amphiphilic short peptides enhance thermal stability of isolated photosystem-I. PLoS One 2010, 5, e10233.

21

Corin, K.; Baaske, P.; Ravel, D. B.; Song, J. Y.; Brown, E.; Wang, X. Q.; Wienken, C. J.; Jerabek-Willemsen, M.; Duhr, S.; Luo, Y. et al. Designer lipid-like peptides: A class of detergents for studying functional olfactory receptors using commercial cell-free systems. PLoS One 2011, 6, e25067.

22

Wang, X. Q.; Corin, K.; Baaske, P.; Wienken, C. J.; Jerabek-Willemsen, M.; Duhr, S.; Braun, D.; Zhang, S. G. Peptide surfactants for cell-free production of functional G protein-coupled receptors. Proc. Natl. Acad. Sci. USA 2011, 108, 9049-9054.

23

Koutsopoulos, S.; Kaiser, L.; Eriksson, H. M.; Zhang, S. G. Designer peptide surfactants stabilize diverse functional membrane proteins. Chem. Soc. Rev. 2012, 41, 1721-1728.

24

Chen, C. X.; Pan, F.; Zhang, S. Z.; Hu, J.; Cao, M. W.; Wang, J.; Xu, H.; Zhao, X. B.; Lu, J. R. Antibacterial activities of short designer peptides: A link between propensity for nanostructuring and capacity for membrane destabilization. Biomacromolecules 2010, 11, 402-411.

25

Dehsorkhi, A.; Castelletto, V.; Hamley, I. W.; Seitsonen, J.; Ruokolainen, J. Interaction between a cationic surfactant-like peptide and lipid vesicles and its relationship to antimicrobial activity. Langmuir 2013, 29, 14246-14253.

26

Fatouros, D. G.; Lamprou, D. A.; Urquhart, A. J.; Yannopoulos, S. N.; Vizirianakis, I. S.; Zhang, S. G.; Koutsopoulos, S. Lipid-like self-assembling peptide nanovesicles for drug delivery. ACS Appl. Mater. Interfaces 2014, 6, 8184-8189.

27

Briuglia, M. -L.; Urquhart, A. J.; Lamprou, D. A. Sustained and controlled release of lipophilic drugs from a self-assembling amphiphilic peptide hydrogel. Int. J. Pharm. 2014, 474, 103-111.

28

Karavasili, C.; Spanakis, M.; Papagiannopoulou, D.; Vizirianakis, I. S.; Fatouros, D. G.; Koutsopoulos, S. Bioactive self-assembling lipid-like peptides as permeation enhancers for oral drug delivery. J. Pharm. Sci. 2015, 104, 2304-2311.

29

Wiradharma, N.; Tong, Y. W.; Yang, Y. Y. Self-assembled oligopeptide nanostructures for co-delivery of drug and gene with synergistic therapeutic effect. Biomaterials 2009, 30, 3100-3109.

30

Ruan, L. P.; Zhang, H. Y.; Luo, H. L.; Liu, J. P.; Tang, F. S.; Shi, Y. K.; Zhao, X. J. Designed amphiphilic peptide forms stable nanoweb, slowly releases encapsulated hydrophobic drug, and accelerates animal hemostasis. Proc. Natl. Acad. Sci. USA 2009, 106, 5105-5110.

31

Wu, E. C.; Zhang, S. G.; Hauser, C. A. E. Self-assembling peptides as Cell-interactive scaffolds. Adv. Funct. Mater. 2012, 22, 456-468.

32

Loo, Y.; Zhang, S. G.; Hauser, C. A. E. From short peptides to nanofibers to macromolecular assemblies in biomedicine. Biotechnol. Adv. 2012, 30, 593-603.

33

Kornmueller, K.; Lehofer, B.; Meindl, C.; Fröhlich, E.; Leitinger, G.; Amenitsch, H.; Prassl, R. Peptides at the interface: Self-assembly of amphiphilic designer peptides and their membrane interaction propensity. Biomacromolecules 2016, 17, 3591-3601.

34

Wimley, W. C.; White, S. H. Experimentally determined hydrophobicity scale for proteins at membrane interfaces. Nat. Struct. Biol. 1996, 3, 842-848.

35
Pepdraw. Peptide Structure [Online]. http://pepdraw.com/ (accessed Mar 17, 2017).
36

Simm, S.; Einloft, J.; Mirus, O.; Schleiff, E. 50 years of amino acid hydrophobicity scales: Revisiting the capacity for peptide classification. Biol. Res. 2016, 49, 31.

37

Amenitsch, H.; Rappolt, M.; Kriechbaum, M.; Mio, H.; Laggner, P.; Bernstorff, S. First performance assessment of the small-angle X-ray scattering beamline at ELETTRA. J. Synchrotron Radiat. 1998, 5, 506-508.

38
Hammersley, A. The FIT2D home page [Online]. http://www.esrf.eu/computing/scientific/FIT2D/ (accessed Mar17, 2017).
39

Orthaber, D.; Bergmann, A.; Glatter, O. SAXS experiments on absolute scale with Kratky systems using water as a secondary standard. J. Appl. Crystallogr. 2000, 33, 218-225.

40

Pabst, G.; Rappolt, M.; Amenitsch, H.; Laggner, P. Structural information from multilamellar liposomes at full hydration: Full q-range fitting with high quality X-ray data. Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 2000, 62, 4000-4009.

41

Pabst, G.; Koschuch, R.; Pozo-Navas, B.; Rappolt, M.; Lohner, K.; Laggner, P. Structural analysis of weakly ordered membrane stacks. J. Appl. Crystallogr. 2003, 36, 1378-1388.

42

Nagle, J. F.; Tristram-Nagle, S. Structure of lipid bilayers. Biochim. Biophys. Acta 2000, 1469, 159-195.

43

Yang, P. W.; Lin, T. L.; Hu, Y.; Jeng, U. S. A time-resolved study on the interaction of oppositely charged bicelles-implications on the charged lipid exchange kinetics. Soft Matter 2015, 11, 2237-2242.

44

Pabst, G.; Danner, S.; Karmakar, S.; Deutsch, G.; Raghunathan, V. A. On the propensity of phosphatidylglycerols to form interdigitated phases. Biophys. J. 2007, 93, 513-525.

45

Förster, S.; Fischer, S.; Zielske, K.; Schellbach, C.; Sztucki, M.; Lindner, P.; Perlich, J. Calculation of scattering-patterns of ordered nano- and mesoscale materials. Adv. Coll. Int. Sci. 2011, 163, 53-83.

46

Kyte, J.; Doolittle, R. F. A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 1982, 157, 105-132.

47

Yau, W. M.; Wimley, W. C.; Gawrisch, K.; White, S. H. The preference of tryptophan for membrane interfaces. Biochemistry 1998, 37, 14713-14718.

48

Yang, P. -W.; Lin, T. -L.; Lin, T. -Y.; Yang, C. -H.; Hu, Y.; Jeng, U. S. Packing DNA with disc-shaped bicelles. Soft Matter 2013, 9, 11542-11548.

49

Sanders, C. R.; Prosser, R. S. Bicelles: A model membrane system for all seasons? Structure 1998, 6, 1227-1234.

50

Seddon, A. M.; Curnow, P.; Booth, P. J. Membrane proteins, lipids and detergents: Not just a soap opera. Biochim. Biophys. Acta 2004, 1666, 105-117.

51

Liang, B. Y.; Tamm, . K. NMR as a tool to investigate the structure, dynamics and function of membrane proteins. Nat. Struct. Mol. Biol. 2016, 23, 468-474.

52

Matsumori, N.; Murata, M. 3D structures of membrane-associated small molecules as determined in isotropic bicelles. Nat. Prod. Rep. 2010, 27, 1480-1492.

File
nr-11-2-913_ESM.pdf (1.4 MB)
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 17 March 2017
Revised: 07 June 2017
Accepted: 08 June 2017
Published: 25 July 2017
Issue date: February 2018

Copyright

© The author(s) 2017

Acknowledgements

Acknowledgements

This work has been supported by the Austrian Science Fund (FWF Project No. I 1109-N28 to R. P.). We gratefully acknowledge Elisabeth Pritz for her support and technical guidance with electron microscopy. We thank Hanna Lindermuth and Hans Krebs for technical assistance.

Rights and permissions

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Return