Journal Home > Volume 11 , Issue 2

Solution-processed n-type organic semiconductor micro/nanocrystals (OSMCs) are fundamental elements for developing low-cost, large-area, and all organic logic/complementary circuits. However, the development of air-stable, highly aligned n-channel OSMC arrays for realizing high-performance devices lags far behind their p-channel counterparts. Herein, we present a simple one-step slope-coating method for the large-scale, solution-processed fabrication of highly aligned, air-stable, n-channel ribbon-shaped single-crystalline N, N′-bis(2-phenylethyl)-perylene-3, 4:9, 10-tetracarboxylic diimide (BPE-PTCDI) arrays. The slope and patterned photoresist (PR) stripes on the substrate are found to be crucial for the formation of large-area submicron ribbon arrays. The width and thickness of the BPE-PTCDI submicron ribbons can be finely tuned by controlling the solution concentration as well as the slope angle. The resulting BPE-PTCDI submicron ribbon arrays possess an optimum electron mobility up to 2.67 cm2·V–1·s–1 (with an average mobility of 1.13 cm2·V–1·s–1), which is remarkably higher than that of thin film counterparts and better than the performance reported previously for single-crystalline BPE-PTCDI-based devices. Moreover, the devices exhibit robust air stability and remain stable after exposing in air over 50 days. Our study facilitates the development of air-stable, n-channel organic field-effect transistors (OFETs) and paves the way towards the fabrication of high-performance, organic single crystal-based integrated circuits.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

High-mobility air-stable n-type field-effect transistors based on large-area solution-processed organic single-crystal arrays

Show Author's information Liang WangXiujuan ZhangGaole DaiWei DengJiansheng Jie( )Xiaohong Zhang
Institute of Functional Nano & Soft Materials (FUNSOM)Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow UniversitySuzhou215123China

Abstract

Solution-processed n-type organic semiconductor micro/nanocrystals (OSMCs) are fundamental elements for developing low-cost, large-area, and all organic logic/complementary circuits. However, the development of air-stable, highly aligned n-channel OSMC arrays for realizing high-performance devices lags far behind their p-channel counterparts. Herein, we present a simple one-step slope-coating method for the large-scale, solution-processed fabrication of highly aligned, air-stable, n-channel ribbon-shaped single-crystalline N, N′-bis(2-phenylethyl)-perylene-3, 4:9, 10-tetracarboxylic diimide (BPE-PTCDI) arrays. The slope and patterned photoresist (PR) stripes on the substrate are found to be crucial for the formation of large-area submicron ribbon arrays. The width and thickness of the BPE-PTCDI submicron ribbons can be finely tuned by controlling the solution concentration as well as the slope angle. The resulting BPE-PTCDI submicron ribbon arrays possess an optimum electron mobility up to 2.67 cm2·V–1·s–1 (with an average mobility of 1.13 cm2·V–1·s–1), which is remarkably higher than that of thin film counterparts and better than the performance reported previously for single-crystalline BPE-PTCDI-based devices. Moreover, the devices exhibit robust air stability and remain stable after exposing in air over 50 days. Our study facilitates the development of air-stable, n-channel organic field-effect transistors (OFETs) and paves the way towards the fabrication of high-performance, organic single crystal-based integrated circuits.

Keywords: organic field-effect transistors, n-type organic single crystals, submicron ribbon arrays, slope-coating method, air-stable

References(37)

1

Sundar, V. C.; Zaumseil, J.; Podzorov, V.; Menard, E.; Willett, R. L.; Someya, T.; Gershenson, M. E.; Rogers, J. A. Elastomeric transistor stamps: Reversible probing of charge transport in organic crystals. Science 2004, 303, 1644-1646.

2

Gundlach, D. J.; Royer, J. E.; Park, S. K.; Subramanian, S.; Jurchescu, O. D.; Hamadani, B. H.; Moad, A. J.; Kline, R. J.; Teague, L. C.; Kirillov, O. et al. Contact-induced crystallinity for high-performance soluble acene-based transistors and circuits. Nat. Mater. 2008, 7, 216-221.

3

Lezama, I. G.; Nakano, M.; Minder, N. A.; Chen, Z. H.; Di Girolamo, F. V.; Facchetti, A.; Morpurgo, A. F. Single-crystal organic charge-transfer interfaces probed using schottky-gated heterostructures. Nat. Mater. 2012, 11, 788-794.

4

Giri, G.; Verploegen, E.; Mannsfeld, S. C. B.; Atahan-Evrenk, S.; Kim, D. H.; Lee, S. Y.; Becerril, H. A.; Aspuru-Guzik, A.; Toney, M. F.; Bao, Z. A. Tuning charge transport in solution-sheared organic semiconductors using lattice strain. Nature 2011, 480, 504-508.

5

Najafov, H.; Lee, B.; Zhou, Q.; Feldman, L. C.; Podzorov, V. Observation of long-range exciton diffusion in highly ordered organic semiconductors. Nat. Mater. 2010, 9, 938-943.

6

Lezama, I. G.; Morpurgo, A. F. Progress in organic single-crystal field-effect transistors. MRS Bull. 2013, 38, 51-56.

7

He, T.; Stolte, M.; Burschka, C.; Hansen, N. H.; Musiol, T.; Kälblein, D.; Pflaum, J.; Tao, X. T.; Brill, J.; Würthner, F. Single-crystal field-effect transistors of new Cl2-NDI polymorph processed by sublimation in air. Nat. Commun. 2015, 6, 5954.

8

Reyes-Martinez, M. A.; Crosby, A. J.; Briseno, A. L. Rubrene crystal field-effect mobility modulation via conducting channel wrinkling. Nat. Commun. 2015, 6, 6948.

9

Wang, H.; Deng, W.; Huang, L. M.; Zhang, X. J.; Jie, J. S. Precisely patterned growth of ultra-long single-crystalline organic microwire arrays for near-infrared photodetectors. ACS Appl. Mater. Interfaces 2016, 8, 7912-7918.

10

Li, H. Y.; Tee, B. C. -K.; Cha, J. J.; Cui, Y.; Chung, J. W.; Lee, S. Y.; Bao, Z. A. High-mobility field-effect transistors from large-area solution-grown aligned C60 single crystals. J. Am. Chem. Soc. 2012, 134, 2760-2765.

11

Briseno, A. L.; Mannsfeld, S. C. B.; Ling, M. M.; Liu, S. H.; Tseng, R. J.; Reese, C.; Roberts, M. E.; Yang, Y.; Wudl, F.; Bao, Z. A. Patterning organic single-crystal transistor arrays. Nature 2006, 444, 913-917.

12

Zheng, W. S.; Xie, T.; Zhou, Y.; Chen, Y. L.; Jiang, W.; Zhao, S. L.; Wu, J. X.; Jing, Y. M.; Wu, Y.; Chen, G. C. et al. Patterning two-dimensional chalcogenide crystals of Bi2Se3 and In2Se3 and efficient photodetectors. Nat. Commun. 2015, 6, 6972.

13

Zhang, X. J.; Jie, J. S.; Deng, W.; Shang, Q. X.; Wang, J. C.; Wang, H.; Chen, X. F.; Zhang, X. H. Alignment and patterning of ordered small-molecule organic semiconductor micro-/nanocrystals for device applications. Adv. Mater. 2016, 28, 2475-2503.

14

Li, Q. F.; Liu, S.; Chen, H. Z.; Li, H. Y. Alignment and patterning of organic single crystals for field-effect transistors. Chin. Chem. Lett. 2016, 27, 1421-1428.

15

Oh, J. H.; Lee, H. W.; Mannsfeld, S.; Stoltenberg, R. M.; Jung, E.; Jin, Y. W.; Kim, J. M.; Yoo, J. -B.; Bao, Z. A. Solution-processed, high-performance n-channel organic microwire transistors. Proc. Natl. Acad. Sci. USA 2009, 106, 6065-6070.

16

Sirringhaus, H. 25th anniversary article: Organic field-effect transistors: The path beyond amorphous silicon. Adv. Mater. 2014, 26, 1319-1335.

17

Takeya, J.; Yamagishi, M.; Tominari, Y.; Hirahara, R.; Nakazawa, Y.; Nishikawa, T.; Kawase, T.; Shimoda, T.; Ogawa, S. Very high-mobility organic single-crystal transistors with in-crystal conduction channels. Appl. Phys. Lett. 2007, 90, 102120.

18

Wang, C. L.; Dong, H. L.; Hu, W. P.; Liu, Y. Q.; Zhu, D. B. Semiconducting π-conjugated systems in field-effect transistors: A material odyssey of organic electronics. Chem. Rev. 2012, 112, 2208-2267.

19

Zhao, Y.; Guo, Y. L.; Liu, Y. Q. 25th anniversary article: Recent advances in n-type and ambipolar organic field-effect transistors. Adv. Mater. 2013, 25, 5372-5391.

20

Anthony, J. E.; Facchetti, A.; Heeney, M.; Marder, S. R.; Zhan, X. W. n-Type organic semiconductors in organic electronics. Adv. Mater. 2010, 22, 3876-3892.

21

Dong, H. L.; Fu, X. L.; Liu, J.; Wang, Z. R.; Hu, W. P. 25th anniversary article: Key points for high-mobility organic field-effect transistors. Adv. Mater. 2013, 25, 6158-6183.

22

Klauk, H.; Zschieschang, U.; Pflaum, J.; Halik, M. Ultralow-power organic complementary circuits. Nature 2007, 445, 745-748.

23

Allard, S.; Forster, M.; Souharce, B.; Thiem, H.; Scherf, U. Organic semiconductors for solution-processable field-effect transistors (OFETs). Angew. Chem., Int. Ed. 2008, 47, 4070-4098.

24

Crone, B.; Dodabalapur, A.; Lin, Y. Y.; Filas, R. W.; Bao, Z.; LaDuca, A.; Sarpeshkar, R.; Katz, H. E.; Li, W. Large-scale complementary integrated circuits based on organic transistors. Nature 2000, 403, 521-523.

25

Dou, J. -H.; Zheng, Y. -Q.; Yao, Z. -F.; Lei, T.; Shen, X. X.; Luo, X. -Y.; Yu, Z. -A.; Zhang, S. -D.; Han, G. C.; Wang, Z. et al. A cofacially stacked electron-deficient small molecule with a high electron mobility of over 10 cm2·V-1·s-1 in air. Adv. Mater. 2015, 27, 8051-8055.

26

Liu, C. M.; Xiao, C. Y.; Li, Y.; Hu, W. P.; Li, Z. B.; Wang, Z. H. High performance, air stable n-type single crystal transistors based on core-tetrachlorinated perylene diimides. Chem. Commun. 2014, 50, 12462-12464.

27

He, T.; Stolte, M.; Würthner, F. Air-stable n-channel organic single crystal field-effect transistors based on microribbons of core-chlorinated naphthalene diimide. Adv. Mater. 2013, 25, 6951-6955.

28

Lv, A. F.; Puniredd, S. R.; Zhang, J. H.; Li, Z. B.; Zhu, H. F.; Jiang, W.; Dong, H. L.; He, Y. D.; Jiang, L.; Li, Y. et al. High mobility, air stable, organic single crystal transistors of an n-type diperylene bisimide. Adv. Mater. 2012, 24, 2626-2630.

29

Xue, G. B.; Wu, J. K.; Fan, C. C.; Liu, S.; Huang, Z. T.; Liu, Y. J.; Shan, B. W.; Xin, H. L.; Miao, Q.; Chen, H. Z. et al. Boosting the electron mobility of solution-grown organic single crystals via reducing the amount of polar solvent residues. Mater. Horiz. 2016, 3, 119-123.

30

Kan, X. N.; Xiao, C. Y.; Li, X. M.; Su, B.; Wu, Y. C.; Jiang, W.; Wang, Z. H.; Jiang, L. A dewetting-induced assembly strategy for precisely patterning organic single crystals in OFETs. ACS Appl. Mater. Interfaces 2016, 8, 18978-18984.

31

Chou, Y. -H.; Lee, W. -Y.; Chen, W. -C. Self-assembled nanowires of organic n-type semiconductor for nonvolatile transistor memory devices. Adv. Funct. Mater. 2012, 22, 4352-4359.

32

Mizuguchi, J. N, N'-Bis(2-phenethyl)perylene-3, 4: 9, 10-bis(dicarboximide). Acta Crystallogr. Sect. C 1998, 54, 1479-1481.

33

Deegan, R. D.; Bakajin, O.; Dupont, T. F.; Huber, G.; Nagel, S. R.; Witten, T. A. Capillary flow as the cause of ring stains from dried liquid drops. Nature 1997, 389, 827-829.

34

Ling, M. -M.; Erk, P.; Gomez, M.; Koenemann, M.; Locklin, J.; Bao, Z. Air-stable n-channel organic semiconductors based on perylene diimide derivatives without strong electron withdrawing groups. Adv. Mater. 2007, 19, 1123-1127.

35

Ling, M. M.; Bao, Z. A.; Erk, P.; Koenemann, M.; Gomez, M. Complementary inverter using high mobility air-stable perylene di-imide derivatives. Appl. Phys. Lett. 2007, 90, 093508.

36

Yu, H.; Bao, Z. A.; Oh, J. H. High-performance phototransistors based on single-crystalline n-channel organic nanowires and photogenerated charge-carrier behaviors. Adv. Funct. Mater. 2013, 23, 629-639.

37

Bittle, E. G.; Basham, J. I.; Jackson, T. N.; Jurchescu, O. D.; Gundlach, D. J. Mobility overestimation due to gated contacts in organic field-effect transistors. Nat. Commun. 2016, 7, 10908.

File
nr-11-2-882_ESM.pdf (3.8 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 19 April 2017
Revised: 02 June 2017
Accepted: 06 June 2017
Published: 29 July 2017
Issue date: February 2018

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany 2017

Acknowledgements

Acknowledgements

This work was supported by the National Basic Research Program of China (Nos. 2012CB932400 and 2016YFA0202400), the National Natural Science Foundation of China (Nos. 61422403, 51672180, 51622306, and 21673151), Qing Lan Project, 111 project, Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Return