Journal Home > Volume 11 , Issue 2

In this work, we described a proof-of-concept method to promote the activity and selectivity of Pd nanoparticles for heterogeneous catalysis (exemplified by C–C coupling reactions) by using acid sites within a zeolite framework. The Pd nanoparticles were encapsulated inside the crystalline walls of mesoporous H-ZSM-5 leading to hybrid samples (denoted as Pd@mZ-x-H) with controlled number of acid sites. A linear relationship between the number of acid sites of the zeolite nanocrystals and the catalytic activities of the Pd nanoparticles in organic reactions was established. Moreover, the shape-dependent selectivity of Pd@mZ-x-H was not sacrificed when the final activity was enhanced.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Mesoporous H-ZSM-5 nanocrystals with programmable number of acid sites as "solid ligands" to activate Pd nanoparticles for C–C coupling reactions

Show Author's information Wenyu KeTianlu CuiQiuying YuMengying WangLibing LvHonghui WangZhidong JiangXinhHao Li( )Jiesheng Chen( )
School of Chemistry and Chemical EngineeringShanghai Jiao Tong UniversityShanghai200240China

Abstract

In this work, we described a proof-of-concept method to promote the activity and selectivity of Pd nanoparticles for heterogeneous catalysis (exemplified by C–C coupling reactions) by using acid sites within a zeolite framework. The Pd nanoparticles were encapsulated inside the crystalline walls of mesoporous H-ZSM-5 leading to hybrid samples (denoted as Pd@mZ-x-H) with controlled number of acid sites. A linear relationship between the number of acid sites of the zeolite nanocrystals and the catalytic activities of the Pd nanoparticles in organic reactions was established. Moreover, the shape-dependent selectivity of Pd@mZ-x-H was not sacrificed when the final activity was enhanced.

Keywords: palladium, Brønsted acidity, HZSM-5, mesopores, Suzuki coupling

References(26)

1

Suzuki, A. Cross-coupling reactions of organoboranes: An easy way to construct C-C bonds (Nobel Lecture). Angew. Chem., Int. Ed. 2011, 50, 6722-6737.

2

Cai, Y. Y.; Li, X. H.; Zhang, Y. N.; Wei, X.; Wang, K. X.; Chen, J. S. Highly efficient dehydrogenation of formic acid over a palladium-nanoparticle-based Mott-Schottky photocatalyst. Angew. Chem., Int. Ed. 2013, 52, 11822-11825.

3

Gong, L. -H.; Cai, Y. -Y.; Li, X. -H.; Zhang, Y. -N.; Su, J.; Chen, J. -S. Room-temperature transfer hydrogenation and fast separation of unsaturated compounds over heterogeneous catalysts in an aqueous solution of formic acid. Green Chem. 2014, 16, 3746-3751.

4

Gurrath, M.; Kuretzky, T.; Boehm, H. P.; Okhlopkova, L. B.; Lisitsyn, A. S.; Likholobov, V. A. Palladium catalysts on activated carbon supports: Influence of reduction temperature, origin of the support and pretreatments of the carbon surface. Carbon 2000, 38, 1241-1255.

5

Parlett, C. M. A.; Bruce, D. W.; Hondow, N. S.; Lee, A. F.; Wilson, K. Support-enhanced selective aerobic alcohol oxidation over Pd/mesoporous silicas. ACS Catal. 2011, 1, 636-640.

6

Chen, Y. Z.; Xu, Q.; Yu, S. H.; Jiang, H. L. Tiny Pd@Co core-shell nanoparticles confined inside a metal-organic framework for highly efficient catalysis. Small 2015, 11, 71-76.

7

Yang, Q. H.; Xu, Q.; Yu, S. -H.; Jiang, H. -L. Pd Nanocubes@ZIF-8: Integration of plasmon-driven photothermal conversion with a metal-organic framework for efficient and selective catalysis. Angew. Chem., Int. Ed. 2016, 55, 3685-3689.

8

Parlett, C. M.; Keshwalla, P.; Wainwright, S. G.; Bruce, D. W.; Hondow, N. S.; Wilson, K.; Lee, A. F. Hierarchically ordered nanoporous Pd/SBA-15 catalyst for the aerobic selective oxidation of sterically challenging allylic alcohols. ACS Catal. 2013, 3, 2122-2129.

9

Liu, R.; Mahurin, S. M.; Li, C.; Unocic, R. R.; Idrobo, J. C.; Gao, H. J.; Pennycook, S. J.; Dai, S. Dopamine as a carbon source: The controlled synthesis of hollow carbon spheres and yolk-structured carbon nanocomposites. Angew. Chem., Int. Ed. 2011, 50, 6799-6802.

10

Wang, Z. C.; Chen, W.; Han, Z. L.; Zhu, J.; Lu, N.; Yang, Y.; Ma, D. K.; Chen, Y.; Huang, S. M. Pd embedded in porous carbon (Pd@CMK-3) as an active catalyst for Suzuki reactions: Accelerating mass transfer to enhance the reaction rate. Nano Res. 2014, 7, 1254-1262.

11

Cui, T. -L.; Ke, W. -Y.; Zhang, W. -B.; Wang, H. -H.; Li, X. -H.; Chen, J. -S. Encapsulating palladium nanoparticles inside mesoporous MFI zeolite nanocrystals for shape-selective catalysis. Angew. Chem., Int. Ed. 2016, 55, 9178-9182.

12

Wang, N.; Sun, Q. M.; Bai, R. S.; Li, X.; Guo, G. Q.; Yu, J. H. In situ confinement of ultrasmall Pd clusters within nanosized silicalite-1 zeolite for highly efficient catalysis of hydrogen generation. J. Am. Chem. Soc. 2016, 138, 7484-7487.

13

Wang, C. T.; Wang, L.; Zhang, J.; Wang, H.; Lewis, J. P.; Xiao, F. -S. Correction to "product selectivity controlled by zeolite crystals in biomass hydrogenation over a palladium catalyst". J. Am. Chem. Soc. 2016, 138, 7880-7883.

14

Li, L.; Li, G. D.; Yan, C.; Mu, X. Y.; Pan, X. L.; Zou, X. X.; Wang, K. X.; Chen, J. S. efficient sunlight-driven dehydrogenative coupling of methane to ethane over a Zn+-modified zeolite. Angew. Chem., Int. Ed. 2011, 50, 8299-8303.

15

Li, L.; Zhou, X. S.; Li, G. D.; Pan, X. L.; Chen, J. S. Unambiguous observation of electron transfer from a zeolite framework to organic molecules. Angew. Chem., Int. Ed. 2009, 48, 6678-6682.

16

Li, X. -H.; Wang, X. C.; Antonietti, M. Mesoporous g-C3N4 nanorods as multifunctional supports of ultrafine metal nanoparticles: Hydrogen generation from water and reduction of nitrophenol with tandem catalysis in one step. Chem. Sci. 2012, 3, 2170-2174.

17

Joo, S. H.; Choi, S. J.; Oh, I.; Kwak, J.; Liu, Z.; Terasaki, O.; Ryoo, R. Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles. Nature 2001, 412, 169-172.

18

Choi, M.; Cho, H. S.; Srivastava, R.; Venkatesan, C.; Choi, D. -H.; Ryoo, R. Amphiphilic organosilane-directed synthesis of crystalline zeolite with tunable mesoporosity. Nat. Mater. 2006, 5, 718-723.

19

Li, X. H.; Baar, M.; Blechert, S.; Antonietti, M. Facilitating room-temperature Suzuki coupling reaction with light: Mott-Schottky photocatalyst for C-C-coupling. Sci. Rep. 2013, 3, 1743.

20

Wang, F.; Li, C. H.; Chen, H. J.; Jiang, R. B.; Sun, L. D.; Li, Q.; Wang, J. F.; Yu, J. C.; Yan, C. H. Plasmonic harvesting of light energy for Suzuki coupling reactions. J. Am. Chem. Soc. 2013, 135, 5588-5601.

21

Huang, X. Q.; Tang, S. H.; Liu, B. J.; Ren, B.; Zheng, N. F. Enhancing the photothermal stability of plasmonic metal nanoplates by a core-shell architecture. Adv. Mater. 2011, 23, 3420-3425.

22

Bai, S.; Wang, X. J.; Hu, C. Y.; Xie, M. L.; Jiang, J.; Xiong, Y. J. Two-dimensional g-C3N4: An ideal platform for examining facet selectivity of metal co-catalysts in photocatalysis. Chem. Commun. 2014, 50, 6094-6097.

23

Cui, T. L.; Li, X. H.; Lv, L. B.; Wang, K. X.; Su, J.; Chen, J. S. Nanoscale Kirkendall growth of silicalite-1 zeolite mesocrystals with controlled mesoporosity and size. Chem. Commun. 2015, 51, 12563-12566.

24

Zhang, W. P.; Ma, D.; Han, X. W.; Liu, X. M.; Bao, X. H.; Guo, X. W.; Wang, X. S. Metne dehydro-aromatization over Mo/HZSM-5 in the absence of oxygen: A multinuclear solid-state NMR study of the interaction between supported Mo species and HZSM-5 zeolite with different crystal sizes. J. Catal. 1999, 188, 393-402.

25

Hartwig, J. F. Electronic effects on reductive elimination to form carbon-carbon and carbon-heteroatom bonds from palladium(Ⅱ) complexes. Inorg. Chem. 2007, 46, 1936-1947.

26

Jover, J.; Fey, N.; Purdie, M.; Lloyd-Jones, G. C.; Harvey, J. N. A computational study of phosphine ligand effects in Suzuki-Miyaura coupling. J. Mol. Catal. A Chem. 2010, 324, 39-47.

File
nr-11-2-874_ESM.pdf (5.1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 20 April 2017
Revised: 26 May 2017
Accepted: 01 June 2017
Published: 12 July 2017
Issue date: February 2018

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany 2017

Acknowledgements

Acknowledgements

This work was supported by the National Basic Research Program of China (No. 2013CB934102), National Natural Science Foundation of China (Nos. 21331004, 21673140, and 21671134), Innovation Program of Shanghai Science and Technology Committee (No. 16JC1401600), Shanghai Eastern Scholar Program, Shanghai Rising-Star Program (No. 16QA1402100) and SJTU-MPI partner group.

Return