Journal Home > Volume 11 , Issue 2

We report the Raman and photoluminescence spectroscopic analysis of layered MoS2 under hydrostatic pressure up to ~ 30 GPa. Unlike previous studies, throughout this work, a special treatment is applied to submerge monolayer, bilayer, multilayer (~ 200 layers), and bulk MoS2 samples directly into silicone oil without a supporting substrate in a diamond anvil cell, thereby eliminating possible interference from substrate–film contact. A thickness-dependent trend is observed for the 2Hc-to-2Ha phase transition: The transition pressure increases from 19.0 to 25.6 GPa as the system thickness is reduced from bulk to multilayer MoS2; a further decrease in thickness to the bilayer structure increases the transition pressure to ~ 36 GPa, as predicted theoretically. This exceeds our measured pressure range, indicating the weakening of interlayer repulsive interactions as the MoS2 film thickness is reduced. Our experiment also reveals a monotonic trend of Raman peak shifting vs. film thickness under applied pressure, suggesting that the Raman vibration modes are more responsive to external pressure in thinner films. The photoluminescence emission peak of the monolayer MoS2 exhibits a blue shift under applied pressure at the rate of 23.8 meV·GPa-1. These results show that the structural and optical properties of MoS2 can be effectively modified by applying hydrostatic pressure.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Thickness-dependent phase transition and optical behavior of MoS2 films under high pressure

Show Author's information Xuerui Cheng1Yuanyuan Li2Jimin Shang1Chuansheng Hu2Yufen Ren1Miao Liu3( )Zeming Qi2( )
School of Physics and Electronic EngineeringZhengzhou University of Light IndustryZhengzhou450002China
National Synchrotron Radiation LaboratoryUniversity of Science and Technology of ChinaHefei230029China
Energy Technologies AreaLawrence Berkeley National LaboratoryBerkeley, California94720USA

Abstract

We report the Raman and photoluminescence spectroscopic analysis of layered MoS2 under hydrostatic pressure up to ~ 30 GPa. Unlike previous studies, throughout this work, a special treatment is applied to submerge monolayer, bilayer, multilayer (~ 200 layers), and bulk MoS2 samples directly into silicone oil without a supporting substrate in a diamond anvil cell, thereby eliminating possible interference from substrate–film contact. A thickness-dependent trend is observed for the 2Hc-to-2Ha phase transition: The transition pressure increases from 19.0 to 25.6 GPa as the system thickness is reduced from bulk to multilayer MoS2; a further decrease in thickness to the bilayer structure increases the transition pressure to ~ 36 GPa, as predicted theoretically. This exceeds our measured pressure range, indicating the weakening of interlayer repulsive interactions as the MoS2 film thickness is reduced. Our experiment also reveals a monotonic trend of Raman peak shifting vs. film thickness under applied pressure, suggesting that the Raman vibration modes are more responsive to external pressure in thinner films. The photoluminescence emission peak of the monolayer MoS2 exhibits a blue shift under applied pressure at the rate of 23.8 meV·GPa-1. These results show that the structural and optical properties of MoS2 can be effectively modified by applying hydrostatic pressure.

Keywords: molybdenum disulfide, photoluminescence, Raman spectroscopy, high pressure, diamond anvil cell

References(46)

1

Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F. Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 2010, 105, 136805.

2

Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 2011, 6, 147–150.

3

Splendiani, A.; Sun, L.; Zhang, Y. B.; Li, T. S.; Kim, J.; Chim, C. Y.; Galli, G.; Wang, F. Emerging photoluminescence in monolayer MoS2. Nano Lett. 2010, 10, 1271–1275.

4

Lopez-Sanchez, O.; Lembke, D.; Kayci, M.; Radenovic, A.; Kis, A. Ultrasensitive photodetectors based on monolayer MoS2. Nat. Nanotechnol. 2013, 8, 497–501.

5

Zeng, H. L.; Dai, J. F.; Yao, W.; Xiao, D.; Cui, X. D. Valley polarization in MoS2 monolayers by optical pumping. Nat. Nanotechnol. 2012, 7, 490–493.

6

Yang, M.; Chai, J. W.; Callsen, M.; Zhou, J.; Yang, T.; Song, T. T.; Pan, J. S.; Chi, D. Z.; Feng, Y. P.; Wang, S. J. Interfacial interaction between HfO2 and MoS2: From thin films to monolayer. J. Phys. Chem. C 2016, 120, 9804–9810.

7

Su, W. T.; Dou, H. L.; Li, J. W.; Huo, D. X.; Dai, N.; Yang, L. Tuning photoluminescence of single-layer MoS2 using H2O2. RSC Adv. 2015, 5, 82924–82929.

8

Wang, H.; Yu, L. L.; Lee, Y. H.; Shi, Y. M.; Hsu, A.; Chin, M. L.; Li, L. J.; Dubey, M.; Kong, J.; Palacios, T. Integrated circuits based on bilayer MoS2 transistors. Nano Lett. 2012, 12, 4674–4680.

9

Sachs, B.; Britnell, L.; Wehling, T. O.; Eckmann, A.; Jalil, R.; Belle, B. D.; Lichtenstein, A. I.; Katsnelson, M. I.; Novoselov, K. S. Doping mechanisms in graphene-MoS2 hybrids. Appl. Phys. Lett. 2013, 103, 251607.

10

Yue, Q.; Chang, S. L.; Qin, S. Q.; Li, J. B. Functionalization of monolayer MoS2 by substitutional doping: A first-principles study. Phys. Lett. A 2013, 377, 1362–1367.

11

Ataca, C.; Şahin, H.; Aktürk, E.; Ciraci, S. Mechanical and electronic properties of MoS2 nanoribbons and their defects. J. Phys. Chem. C 2011, 115, 3934–3941.

12

Liu, X. G.; Li, Z. Y. Electric field and strain effect on graphene-MoS2 hybrid structure: Ab initio calculations. J. Phys. Chem. Lett. 2015, 6, 3269–3275.

13

Qi, J. S.; Li, X.; Qian, X. F.; Feng, J. Bandgap engineering of rippled MoS2 monolayer under external electric field. Appl. Phys. Lett. 2013, 102, 173112.

14

Scalise, E.; Houssa, M.; Pourtois, G.; Afanas'ev, V.; Stesmans, A. Strain-induced semiconductor to metal transition in the two-dimensional honeycomb structure of MoS2. Nano Res. 2012, 5, 43–48.

15

Lu, P.; Wu, X. J.; Guo, W. L.; Zeng, X. C. Strain-dependent electronic and magnetic properties of MoS2 monolayer, bilayer, nanoribbons and nanotubes. Phys. Chem. Chem. Phys. 2012, 14, 13035–13040.

16

Peelaers, H.; Van de Walle, C. G. Effects of strain on band structure and effective masses in MoS2. Phys. Rev. B 2012, 86, 241401.

17

Cheiwchanchamnangij, T.; Lambrecht, W. R. L.; Song, Y.; Dery, H. Strain effects on the spin-orbit-induced band structure splittings in monolayer MoS2 and graphene. Phys. Rev. B 2013, 88, 155404.

18

Fan, X. F.; Chang, C. H.; Zheng, W. T.; Kuo, J. L.; Singh, D. J. The electronic properties of single-layer and multilayer MoS2 under high pressure. J. Phys. Chem. C 2015, 119, 10189–10196.

19

Dou, X. M.; Ding, K.; Jiang, D. S.; Fan, X. F.; Sun, B. Q. Probing spin-orbit coupling and interlayer coupling in atomically thin molybdenum disulfide using hydrostatic pressure. ACS Nano 2016, 10, 1619–1624.

20

Zardo, I.; Yazji, S.; Marini, C.; Uccelli, E.; Morral, A. F. I.; Abstreiter, G.; Postorino, P. Pressure tuning of the optical properties of GaAs nanowires. ACS Nano 2012, 6, 3284–3291.

21

Nayak, A. P.; Yuan, Z.; Cao, B. X.; Liu, J.; Wu, J. J.; Moran, S. T.; Li, T. S.; Akinwande, D.; Jin, C. Q.; Lin, J. F. Pressure-modulated conductivity, carrier density, and mobility of multilayered tungsten disulfide. ACS Nano 2015, 9, 9117–9123.

22

Zhao, Z.; Zhang, H. J.; Yuan, H. T.; Wang, S. B.; Lin, Y.; Zeng, Q. S.; Xu, G.; Liu, Z. X.; Solanki, G. K.; Patel, K. D. et al. Pressure induced metallization with absence of structural transition in layered molybdenum diselenide. Nat. Commun. 2015, 6, 7312.

23

Guo, H. H.; Yang, T.; Tao, P.; Wang, Y.; Zhang, Z. D. High pressure effect on structure, electronic structure, and thermoelectric properties of MoS2. J. Appl. Phys. 2013, 113, 013709.

24

Dou, X. M.; Ding, K.; Jiang, D. S.; Sun, B. Q. Tuning and identification of interband transitions in monolayer and bilayer molybdenum disulfide using hydrostatic pressure. ACS Nano 2014, 8, 7458–7464.

25

Nayak, A. P.; Bhattacharyya, S.; Zhu, J.; Liu, J.; Wu, X.; Pandey, T.; Jin, C. Q.; Singh, A. K.; Akinwande, D.; Lin, J. F. Pressure-induced semiconducting to metallic transition in multilayered molybdenum disulphide. Nat. Commun. 2014, 5, 3731.

26

Nayak, A. P.; Pandey, T.; Voiry, D.; Liu, J.; Moran, S. T.; Sharma, A.; Tan, C.; Chen, C. H.; Li, L. J.; Chhowalla, M. et al. Pressure-dependent optical and vibrational properties of mono layer molybdenum disulfide. Nano Lett. 2015, 15, 346–353.

27

Li, F. F.; Yan, Y. L.; Han, B.; Li, L.; Huang, X. L.; Yao, M. G.; Gong, Y. B.; Jin, X. L.; Liu, B. L.; Zhu, C. R. et al. Pressure confinement effect in MoS2 monolayers. Nanoscale 2015, 7, 9075–9082.

28

Li, Y. Y.; Qi, Z. M.; Liu, M.; Wang, Y. Y.; Cheng, X. R.; Zhang, G. B.; Sheng, L. S. Photoluminescence of monolayer MoS2 on LaAlO3 and SrTiO3 substrates. Nanoscale 2014, 6, 15248–15254.

29

Zhu, H. Y.; Wang, Y.; Xiao, J.; Liu, M.; Xiong, S. M.; Wong, Z. J.; Ye, Z. L.; Ye, Y.; Yin, X. B.; Zhang, X. Observation of piezoelectricity in free-standing monolayer MoS2. Nat. Nanotechnol. 2015, 10, 151–155.

30

Shi, J. P.; Zhang, X. N.; Ma, D. L.; Zhu, J. B.; Zhang, Y.; Guo, Z. X.; Yao, Y.; Ji, Q. Q.; Song, X. J.; Zhang, Y. S. et al. Substrate facet effect on the growth of monolayer MoS2 on Au foils. ACS Nano 2015, 9, 4017–4025.

31

Scheuschner, N.; Ochedowski, O.; Kaulitz, A. M.; Gillen, R.; Schleberger, M.; Maultzsch, J. Photoluminescence of freestanding single- and few-layer MoS2. Phys. Rev. B 2014, 89, 125406.

32

Heyd, J.; Scuseria, G. E.; Ernzerhof, M. Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 2003, 118, 8207–8215.

33

Heyd, J.; Scuseria, G. E.; Ernzerhof, M. Erratum: Hybrid functionals based on a screened Coulomb potential [J. Chem. Phys. 118, 8207 (2003)]. J. Chem. Phys. 2006, 124, 219906.

34

Blöchl, P. E.; Först, C. J.; Schimpl, J. Projector augmented wave method: Ab initio molecular dynamics with full wave functions. Bull. Mater. Sci. 2003, 26, 33–41.

35

Rangel, T.; Caliste, D.; Genovese, L.; Torrent, M. A wavelet- based projector augmented-wave (PAW) method: Reaching frozen-core all-electron precision with a systematic, adaptive and localized wavelet basis set. Comput. Phys. Commun. 2016, 208, 1–8.

36

Buscema, M.; Steele, G. A.; van der Zant, H. S. J.; Castellanos-Gomez, A. The effect of the substrate on the Raman and photoluminescence emission of single-layer MoS2. Nano Res. 2014, 7, 561–571.

37

Wang, Y. Y.; Gao, R. X.; Ni, Z. H.; He, H.; Guo, S. P.; Yang, H. P.; Cong, C. X.; Yu, T. Thickness identification of two-dimensional materials by optical imaging. Nanotechnology 2012, 23, 495713.

38

Lee, C.; Yan, H. G.; Brus, L. E.; Heinz, T. F.; Hone, J.; Ryu, S. Anomalous lattice vibrations of single- and few-layer MoS2. ACS Nano 2010, 4, 2695–2700.

39

Chi, Z. H.; Zhao, X. M.; Zhang, H. D.; Goncharov, A. F.; Lobanov, S. S.; Kagayama, T.; Sakata, M.; Chen, X. J. Pressure-induced metallization of molybdenum disulfide. Phys. Rev. Lett. 2014, 113, 036802.

40

Hromadová, L.; Martoňák, R.; Tosatti, E. Structure change, layer sliding, and metallization in high-pressure MoS2. Phys. Rev. B 2013, 87, 144105.

41

Fan, X. F.; Singh, D. J.; Jiang, Q.; Zheng, W. T. Pressure evolution of the potential barriers of phase transition of MoS2, MoSe2 and MoTe2. Phys. Chem. Chem. Phys. 2016, 18, 12080–12085.

42

Wang, S. M.; Zhang, J. Z.; He, D. W.; Zhang, Y.; Wang, L. P.; Xu, H. W.; Wen, X. D.; Ge, H.; Zhao, Y. S. Sulfur-catalyzed phase transition in MoS2 under high pressure and temperature. J. Phys. Chem. Solids 2014, 75, 100–104.

43

Bhattacharyya, S.; Singh, A. K. Semiconductor-metal transition in semiconducting bilayer sheets of transition- metal dichalcogenides. Phys. Rev. B 2012, 86, 075454.

44

Proctor, J. E.; Gregoryanz, E.; Novoselov, K. S.; Lotya, M.; Coleman, J. N.; Halsall, M. P. High-pressure Raman spectroscopy of graphene. Phys. Rev. B 2009, 80, 073408.

45

Filintoglou, K.; Papadopoulos, N.; Arvanitidis, J.; Christofilos, D.; Frank, O.; Kalbac, M.; Parthenios, J.; Kalosakas, G.; Galiotis, C.; Papagelis, K. Raman spectroscopy of graphene at high pressure: Effects of the substrate and the pressure transmitting media. Phys. Rev. B 2013, 88, 045418.

46

Lu, S. C.; Yao, M. G.; Yang, X. G.; Li, Q. J.; Xiao, J. P.; Yao, Z.; Jiang, L. H.; Liu, R.; Liu, B.; Chen, S. L. et al. High pressure transformation of graphene nanoplates: A Raman study. Chem. Phys. Lett. 2013, 585, 101–106.

File
nr-11-2-855_ESM.pdf (1.2 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 11 March 2017
Revised: 30 May 2017
Accepted: 01 June 2017
Published: 07 July 2017
Issue date: February 2018

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany 2017

Acknowledgements

Acknowledgements

We gratefully acknowledge the financial support of National Natural Science Foundation of China (No. 11404292, No. 31201377, No. 11275203 and 11275205), Fund for Young Backbone Teachers of Universities in Henan Province (Nos. 2014GGJS-085 and 2013GGJS-111), Technological Development Grant of Hefei Science Center of CAS (No. 2014TDG-HSC002), and National Key Scientific Instrument and Equipment Development Project (No. 2011YQ130018).

Return