Journal Home > Volume 11 , Issue 2

Owing to their unique structural stability and impressive long-term cycling performance, coated hollow structures are highly attractive for energy storage systems, especially batteries. Many efforts have been devoted and various strategies have been proposed to prepare such materials. In the present work, we propose a self-templating thermolysis strategy, different from traditional wet processing methods, to fabricate cuprous sulfide hollow spheres coated with different shells, by exploiting the thermal decomposition properties of the core (CuS) and the protection provided by the shell. To demonstrate the generality of this synthetic approach, three different coating materials (carbon, TiO2, MoS2) have been chosen to prepare Cu2–xS@C, Cu2–xS@TiO2 and Cu2–xS@MoS2 hollow spheres. All synthesized composite materials were then assembled as electrodes and tested in lithium batteries, showing excellent cycling stability. In particular, the electrochemical properties of Cu2–xS@C were thoroughly investigated. The results of this work provide an alternative route to prepare coated metal sulfide hollow spheres for energy storage applications.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Self-templating thermolysis synthesis of Cu2–xS@M (M = C, TiO2, MoS2) hollow spheres and their application in rechargeable lithium batteries

Show Author's information Yunhui Wang1,2,3He Li1,2,3Yiyong Zhang1,2,3Yueying Peng1,2,3Peng Zhang3,4Jinbao Zhao1,2,3,4( )
State Key Lab of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005China
Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005China
State-Province Joint Engineering Laboratory of Power Source Technology for New Energy VehicleXiamen UniversityXiamen361102China
College of EnergyXiamen UniversityXiamen361102China

Abstract

Owing to their unique structural stability and impressive long-term cycling performance, coated hollow structures are highly attractive for energy storage systems, especially batteries. Many efforts have been devoted and various strategies have been proposed to prepare such materials. In the present work, we propose a self-templating thermolysis strategy, different from traditional wet processing methods, to fabricate cuprous sulfide hollow spheres coated with different shells, by exploiting the thermal decomposition properties of the core (CuS) and the protection provided by the shell. To demonstrate the generality of this synthetic approach, three different coating materials (carbon, TiO2, MoS2) have been chosen to prepare Cu2–xS@C, Cu2–xS@TiO2 and Cu2–xS@MoS2 hollow spheres. All synthesized composite materials were then assembled as electrodes and tested in lithium batteries, showing excellent cycling stability. In particular, the electrochemical properties of Cu2–xS@C were thoroughly investigated. The results of this work provide an alternative route to prepare coated metal sulfide hollow spheres for energy storage applications.

Keywords: hollow spheres, sulfide, self-templating thermolysis, lithium batteries

References(62)

1

Tarascon, J. M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359–367.

2

Goodenough, J. B.; Park, K. S. The Li-ion rechargeable battery: A perspective. J. Am. Chem. Soc. 2013, 135, 1167– 1176.

3

Li, X.; Lin, H. C.; Cui, W. J.; Xiao, Q.; Zhao, J. B. Fast solution-combustion synthesis of nitrogen-modified Li4Ti5O12 nanomaterials with improved electrochemical performance. ACS Appl. Mater. Interfaces 2014, 6, 7895–7901.

4

Wang, C.; Wang, S.; Tang, L. K.; He, Y. B.; Gan, L.; Li, J.; Du, H. D.; Li, B. H.; Lin, Z. Q.; Kang, F. Y. A robust strategy for crafting monodisperse Li4Ti5O12 nanospheres as superior rate anode for lithium ion batteries. Nano Energy 2016, 21, 133–144.

5

Kim, C.; Norberg, N. S.; Alexander, C. T.; Kostecki, R.; Cabana, J. Mechanism of phase propagation during lithiation in carbon-free Li4Ti5O12 battery electrodes. Adv. Funct. Mater. 2013, 23, 1214–1222.

6

Choi, J. W.; Aurbach, D. Promise and reality of post-lithium-ion batteries with high energy densities. Nat. Rev. Mater. 2016, 1, 16013.

7

Choi, N. S.; Chen, Z. H.; Freunberger, S. A.; Ji, X. L.; Sun, Y. K.; Amine, K.; Yushin, G.; Nazar, L. F.; Cho, J.; Bruce, P. G. Challenges facing lithium batteries and electrical double-layer capacitors. Angew. Chem., Int. Ed. 2012, 51, 9994–10024.

8

Ye, L. H.; Wen, K. C.; Zhang, Z. X.; Yang, F.; Liang, Y. C.; Lv, W. Q.; Lin, Y. K.; Gu, J. M.; Dickerson, J. H.; He, W. D. Highly efficient materials assembly via electrophoretic deposition for electrochemical energy conversion and storage devices. Adv. Energy Mater. 2016, 6, 1502018.

9

Lv, W.; Shi, X. Y.; Huang, H. C.; Niu, Y. H.; Yang, W.; Liu, P.; Qin, W.; He, W. D. High O/C ratio graphene oxide anode for improved cyclic performance of lithium ion batteries and the in-operando Raman investigation of its (de)lithiation. Mater. Today Energy 2017, 3, 40–44.

10

Liu, J. M.; Xiao, J.; Zeng, X. Y.; Dong, P.; Zhao, J. B.; Zhang, Y. J.; Li, X. Combustion synthesized macroporous structure MFe2O4 (M = Zn, Co) as anode materials with excellent electrochemical performance for lithium ion batteries. J. Alloys Compd. 2017, 699, 401–407.

11

Shi, Y.; Wang, J. Z.; Chou, S. L.; Wexler, D.; Li, H. J.; Ozawa, K.; Liu, H. K.; Wu, Y. P. Hollow structured Li3VO4 wrapped with graphene nanosheets in situ prepared by a one-pot template-free method as an anode for lithium-ion batteries. Nano Lett. 2013, 13, 4715–4720.

12

Jian, Z. L.; Zheng, M. B.; Liang, Y. L.; Zhang, X. X.; Gheytani, S.; Lan, Y. C.; Shi, Y.; Yao, Y. Li3VO4 anchored graphene nanosheets for long-life and high-rate lithium-ion batteries. Chem. Commun. 2015, 51, 229–231.

13

Lai, C. H.; Lu, M. Y.; Chen, L. J. Metal sulfide nanostructures: Synthesis, properties and applications in energy conversion and storage. J. Mater. Chem. 2012, 22, 19–30.

14

Peng, S. J.; Li, L. L.; Tan, H. T.; Cai, R.; Shi, W. H.; Li, C. C.; Mhaisalkar, S. G.; Srinivasan, M.; Ramakrishna, S.; Yan, Q. Y. MS2 (M = Co and Ni) hollow spheres with tunable interiors for high-performance supercapacitors and photovoltaics. Adv. Funct. Mater. 2014, 24, 2155–2162.

15

McDowell, M. T.; Lu, Z. D.; Koski, K. J.; Yu, J. H.; Zheng, G. Y.; Cui, Y. In situ observation of divergent phase transformations in individual sulfide nanocrystals. Nano Lett. 2015, 15, 1264–1271.

16

Li, X.; He, X. Y.; Shi, C. M.; Liu, B.; Zhang, Y. Y.; Wu, S. Q.; Zhu, Z. Z.; Zhao, J. B. Synthesis of one-dimensional copper sulfide nanorods as high-performance anode in lithium ion batteries. ChemSusChem 2014, 7, 3328–3333.

17

Villevieille, C.; Ebner, M.; Gómez-Cámer, J. L.; Marone, F.; Novák, P.; Wood, V. Influence of conversion material morphology on electrochemistry studied with operando X-ray tomography and diffraction. Adv. Mater. 2015, 27, 1676–1681.

18

Lin, F.; Nordlund, D.; Weng, T. C.; Zhu, Y.; Ban, C. M.; Richards, R. M.; Xin, H. L. Phase evolution for conversion reaction electrodes in lithium-ion batteries. Nat. Commun. 2014, 5, 3358.

19

Chen, K. F.; Xue, D. F. Materials chemistry toward electrochemical energy storage. J. Mater. Chem. A 2016, 4, 7522–7537.

20

Lv, W. Q.; Niu, Y. H.; Jian, X.; Zhang, K. H. L.; Wang, W.; Zhao, J. Y.; Wang, Z. M.; Yang, W. Q.; He, W. D. Space matters: Li+ conduction versus strain effect at FePO4/LiFePO4 interface. Appl. Phys. Lett. 2016, 108, 083901.

21

Jache, B.; Mogwitz, B.; Klein, F.; Adelhelm, P. Copper sulfides for rechargeable lithium batteries: Linking cycling stability to electrolyte composition. J. Power Sources 2014, 247, 703–711.

22

Hu, H.; Cheng, H. Y.; Liu, Z. F.; Li, G. J.; Zhu, Q. C.; Yu, Y. In situ polymerized PAN-assisted S/C nanosphere with enhanced high-power performance as cathode for lithium/sulfur batteries. Nano Lett. 2015, 15, 5116–5123.

23

Liu, Z. M.; Yu, X. Y.; Paik, U. Etching-in-a-box: A novel strategy to synthesize unique yolk-shelled Fe3O4@carbon with an ultralong cycling life for lithium storage. Adv. Energy Mater. 2016, 6, 1502318.

24

Hwa, Y.; Zhao, J.; Cairns, E. J. Lithium sulfide (Li2S)/graphene oxide nanospheres with conformal carbon coating as a high-rate, long-life cathode for Li/S cells. Nano Lett. 2015, 15, 3479–3486.

25

Zhang, C. F.; Wu, H. B.; Guo, Z. P.; Lou, X. W. D. Facile synthesis of carbon-coated MoS2 nanorods with enhanced lithium storage properties. Electrochem. Commun. 2012, 20, 7–10.

26

Cao, Q.; Zhang, H. P.; Wang, G. J.; Xia, Q.; Wu, Y. P.; Wu, H. Q. A novel carbon-coated LiCoO2 as cathode material for lithium ion battery. Electrochem. Commun. 2007, 9, 1228–1232.

27

Wang, W. S.; Sa, Q. N.; Chen, J. H.; Wang, Y.; Jung, H.; Yin, Y. D. Porous TiO2/C nanocomposite shells as a high-performance anode material for lithium-ion batteries. ACS Appl. Mater. Interfaces 2013, 5, 6478–6483.

28

Seh, Z. W.; Li, W. Y.; Cha, J. J.; Zheng, G. Y.; Yang, Y.; McDowell, M. T.; Hsu, P. C.; Cui, Y. Sulphur-TiO2 yolk–shell nanoarchitecture with internal void space for long-cycle lithium-sulphur batteries. Nat. Commun. 2013, 4, 1331.

29

Li, H. Q.; Zhou, H. S. Enhancing the performances of Li-ion batteries by carbon-coating: Present and future. Chem. Commun. 2012, 48, 1201–1217.

30

Zhang, X. Q.; Li, X. N.; Liang, J. W.; Zhu, Y. C.; Qian, Y. T. Synthesis of MoS2@C nanotubes via the kirkendall effect with enhanced electrochemical performance for lithium ion and sodium ion batteries. Small 2016, 12, 2484–2491.

31

Liu, J.; Wu, C.; Xiao, D. D.; Kopold, P.; Gu, L.; van Aken, P. A.; Maier, J.; Yu, Y. MOF-derived hollow Co9S8 nanoparticles embedded in graphitic carbon nanocages with superior Li-ion storage. Small 2016, 12, 2354–2364.

32

Lou, X. W. D.; Archer, L. A.; Yang, Z. C. Hollow micro-/nanostructures: Synthesis and applications. Adv. Mater. 2008, 20, 3987–4019.

33

Yu, X. Y.; Yu, L.; Lou, X. W. D. Metal sulfide hollow nanostructures for electrochemical energy storage. Adv. Energy Mater. 2016, 6, 1501333.

34

El-Toni, A. M.; Habila, M. A.; Labis, J. P.; ALOthman, Z. A.; Alhoshan, M.; Elzatahry, A. A.; Zhang, F. Design, synthesis and applications of core–shell, hollow core, and nanorattle multifunctional nanostructures. Nanoscale 2016, 8, 2510–2531.

35

Zhou, Y. X.; Yao, H. B.; Wang, Y.; Liu, H. L.; Gao, M. R.; Shen, P. K.; Yu, S. H. Hierarchical hollow Co9S8 microspheres: Solvothermal synthesis, magnetic, electrochemical, and electrocatalytic properties. Chemistry 2010, 16, 12000–12007.

36

Cho, J. S.; Won, J. M.; Lee, J. -H.; Kang, Y. C. Synthesis and electrochemical properties of spherical and hollow-structured NiO aggregates created by combining the Kirkendall effect and Ostwald ripening. Nanoscale 2015, 7, 19620–19626.

37

Li, H.; Wang, Y. H.; Huang, J. X.; Zhang, Y. Y.; Zhao, J. B. Microwave-assisted synthesis of CuS/graphene composite for enhanced lithium storage properties. Electrochim. Acta 2017, 225, 443–451.

38

Shah, I. D.; Khalafalla, S. E. Thermal decomposition of CuS to Cu1.8S. Metall. Trans. 1971, 2, 605–606.

39

Godočíková, E.; Baláž, P.; Criado, J. M.; Real, C.; Gock, E. Thermal behaviour of mechanochemically synthesized nanocrystalline CuS. Thermochim. Acta 2006, 440, 19–22.

40

Luo, G. E.; Liu, W. J.; Zeng, S. S.; Zhang, C. C.; Yu, X. Y.; Fang, Y. P.; Sun, L. Y. Hierarchal mesoporous SnO2@C@TiO2 nanochains for anode material of lithium-ion batteries with excellent cycling stability. Electrochim. Acta 2015, 184, 219–225.

41

Kim, S. J.; Kim, M. C.; Kwak, D. H.; Kim, D. M.; Lee, G. H.; Choe, H. S.; Park, K. W. Highly stable TiO2 coated Li2MnO3 cathode materials for lithium-ion batteries. J. Power Sources 2016, 304, 119–127.

42

George, C.; Morris, A. J.; Modarres, M. H.; De Volder, M. Structural evolution of electrochemically lithiated MoS2 nanosheets and the role of carbon additive in Li-ion batteries. Chem. Mater. 2016, 28, 7304–7310.

43

Sands, T. D.; Washburn, J.; Gronsky, R. High resolution observations of copper vacancy ordering in chalcocite (Cu2S) and the transformation to djurleite (Cu1.97 to 1.94S). Phys. Status Solidi (A) 1982, 72, 551–559.

44

Yang, C.; Chen, Z. X.; Shakir, I.; Xu, Y. X.; Lu, H. B. Rational synthesis of carbon shell coated polyaniline/MoS2 monolayer composites for high-performance supercapacitors. Nano Res. 2016, 9, 951–962.

45

Zhang, Q. Q.; Bai, H.; Zhang, Q.; Ma, Q.; Li, Y. H.; Wan, C. Q.; Xi, G. C. MoS2 yolk–shell microspheres with a hierarchical porous structure for efficient hydrogen evolution. Nano Res. 2016, 9, 3038–3047.

46

Peng, S. J.; Li, L. L.; Mhaisalkar, S. G.; Srinivasan, M.; Ramakrishna, S.; Yan, Q. Y. Hollow nanospheres constructed by CoS2 nanosheets with a nitrogen-doped-carbon coating for energy-storage and photocatalysis. ChemSusChem 2014, 7, 2212–2220.

47

Zhou, G. M.; Paek, E.; Hwang, G. S.; Manthiram, A. High-performance lithium-sulfur batteries with a self-supported, 3D Li2S-doped graphene aerogel cathodes. Adv. Energy Mater. 2016, 6, 1501355.

48

Sun, K.; Su, D.; Zhang, Q.; Bock, D. C.; Marschilok, A. C.; Takeuchi, K. J.; Takeuchi, E. S.; Gan, H. Interaction of CuS and sulfur in Li-S battery system. J. Electrochem. Soc. 2015, 162, A2834–A2839.

49

Cai, R.; Chen, J.; Zhu, J. X.; Xu, C.; Zhang, W. Y.; Zhang, C. M.; Shi, W. H.; Tan, H. T.; Yang, D.; Hng, H. H. et al. Synthesis of CuxS/Cu nanotubes and their lithium storage properties. J. Phys. Chem. C 2012, 116, 12468–12474.

50

Shi, C. M.; Li, X.; He, X. Y.; Zhao, J. B. New insight into the interaction between carbonate-based electrolyte and cuprous sulfide electrode material for lithium ion batteries. Electrochim. Acta 2015, 174, 1079–1087.

51

Wang, X. X.; Wang, Y. H.; Li, X.; Liu, B.; Zhao, J. B. A facile synthesis of copper sulfides composite with lithium-storage properties. J. Power Sources 2015, 281, 185–191.

52

Song, T.; Han, H.; Choi, H.; Lee, J. W.; Park, H.; Lee, S.; Park, W. I.; Kim, S.; Liu, L.; Paik, U. TiO2 nanotube branched tree on a carbon nanofiber nanostructure as an anode for high energy and power lithium ion batteries. Nano Res. 2014, 7, 491–501.

53

Zeng, Z. Y.; Zhang, X. W.; Bustillo, K.; Niu, K. Y.; Gammer, C.; Xu, J.; Zheng, H. M. In situ study of lithiation and delithiation of MoS2 nanosheets using electrochemical liquid cell transmission electron microscopy. Nano Lett. 2015, 15, 5214–5220.

54

Zhang, Y. J.; Zhao, S. B.; Zeng, X. Y.; Xiao, J.; Dong, P.; Zhao, J. B.; Sun, S. G.; Huang, L.; Li, X. TiO2–MoS2 hybrid nano composites with 3D network architecture as binder-free flexible electrodes for lithium ion batteries. J. Mater. Sci. Mater. Electron. 2017, 28, 9519–9527.

55

Ma, G. Q.; Wen, Z. Y.; Jin, J.; Lu, Y.; Rui, K.; Wu, X. W.; Wu, M. F.; Zhang, J. C. Enhanced performance of lithium sulfur battery with polypyrrole warped mesoporous carbon/sulfur composite. J. Power Sources 2014, 254, 353–359.

56

Zhou, W. D.; Yu, Y. C.; Chen, H.; DiSalvo, F. J.; Abruña, H. D. Yolk–shell structure of polyaniline-coated sulfur for lithium-sulfur batteries. J. Am. Chem. Soc. 2013, 135, 16736–16743.

57

Wu, R. B.; Wang, D. P.; Rui, X. H.; Liu, B.; Zhou, K.; Law, A. W. K.; Yan, Q. Y.; Wei, J.; Chen, Z. In-situ formation of hollow hybrids composed of cobalt sulfides embedded within porous carbon polyhedra/carbon nanotubes for high-performance lithium-ion batteries. Adv. Mater. 2015, 27, 3038–3044.

58

Zhou, Y. L.; Yan, D.; Xu, H. Y.; Feng, J. K.; Jiang, X. L.; Yue, J.; Yang, J.; Qian, Y. T. Hollow nanospheres of mesoporous Co9S8 as a high-capacity and long-life anode for advanced lithium ion batteries. Nano Energy 2015, 12, 528–537.

59

Ranganath, S. B.; Hassan, A. S.; Ramachandran, B. R.; Wick, C. D. Role of metal-lithium oxide interfaces in the extra lithium capacity of metal oxide lithium-ion battery anode materials. J. Electrochem. Soc. 2016, 163, A2172– A2178.

60

Ji, X. L.; Evers, S.; Black, R.; Nazar, L. F. Stabilizing lithium-sulphur cathodes using polysulphide reservoirs. Nat. Commun. 2011, 2, 325.

61

Zhang, S. S.; Tran, D. T. Mechanism and solution for the capacity fading of Li/FeS2 battery. J. Electrochem. Soc. 2016, 163, A792–A797.

62

Liu, Y. C.; Jiao, L. F.; Wu, Q.; Zhao, Y. P.; Cao, K. Z.; Liu, H. Q.; Wang, Y. J.; Yuan, H. T. Synthesis of rGO-supported layered MoS2 for high-performance rechargeable Mg batteries. Nanoscale 2013, 5, 9562–9567.

File
nr-11-2-831_ESM.pdf (1.2 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 14 March 2017
Revised: 27 May 2017
Accepted: 30 May 2017
Published: 19 July 2017
Issue date: February 2018

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany 2017

Acknowledgements

Acknowledgements

We gratefully acknowledge the financial support of National Natural Science Foundation of China (Nos. 21273185 and 21321062). The authors also thank Prof. Daiwei Liao for the valuable suggestions.

Return