AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Facile preparation of pristine graphene using urea/glycerol as efficient stripping agents

Jianping Chen1,2,§Weili Shi1,§Zhaodongfang Gao1Tao Wang1Shan Wang1Lijie Dong1Quanling Yang1( )Chuanxi Xiong1( )
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing and School of Materials Science and EngineeringWuhan University of TechnologyWuhan430070China
National & Local Joint Engineering Research Center for Applied Technology of Hybrid NanomaterialsHenan UniversityKaifeng475004China

§ Jianping Chen and Weili Shi contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Large-scale exfoliation of defect-free and few-layer graphene by an inexpensive and environmentally-friendly route has been a significant challenge for a long time. Here we show that high-quality, few-layer graphene with high stability and low defect content can be obtained from natural graphite via a simple stirring process in urea/glycerol, with yields of up to 12 wt.%. We also demonstrate that this facile method can be applied to the exfoliation of other two-dimensional materials, such as molybdenum disulfide and boron nitride. The as-prepared graphene was further composited with polyvinylidene fluoride (PVDF) and the composite exhibited a low percolation threshold of 0.05 vol.%. The incorporation of low (4.5 vol.%) graphene amounts led to a significant increase in the thermal conductivity of the graphene–PVDF composites.

Electronic Supplementary Material

Download File(s)
nr-11-2-820_ESM.pdf (4.5 MB)

References

1

Oostinga, J. B.; Heersche, H. B.; Liu, X. L.; Morpurgo, A. F.; Vandersypen, L. M. K. Gate-induced insulating state in bilayer graphene devices. Nat. Mater. 2008, 7, 151–157.

2

Stankovich, S.; Dikin, D. A.; Dommett, G. H. B.; Kohlhaas, K. M.; Zimney, E. J.; Stach, E. A.; Piner, R. D.; Nguyen, S. T.; Ruoff, R. S. Graphene-based composite materials. Nature 2006, 442, 282–286.

3

Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.

4

Li, X. S.; Cai, W. W.; An, J.; Kim, S.; Nah, J.; Yang, D. X.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E.; Banerjee, S. K. et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 2009, 324, 1312–1314.

5

Li, X. S.; Cai, W. W.; Colombo, L.; Ruoff, R. S. Evolution of graphene growth on Ni and Cu by carbon isotope labeling. Nano Lett. 2009, 9, 4268–4272.

6

Paton, K. R.; Varrla, E.; Backes, C.; Smith, R. J.; Khan, U.; O'Neill, A.; Boland, C.; Lotya, M.; Istrate, O. M.; King, P. et al. Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids. Nat Mater 2014, 13, 624–630.

7

Li, Y.; Fan, X. B.; Qi, J. J.; Ji, J. Y.; Wang, S. L.; Zhang, G. L.; Zhang, F. B. Palladium nanoparticle-graphene hybrids as active catalysts for the Suzuki reaction. Nano Res. 2010, 3, 429–437.

8

Zhang, D. D.; Fu, L.; Liao, L.; Liu, N.; Dai, B. Y.; Zhang, C. X. Preparation, characterization, and application of electrochemically functional graphene nanocomposites by one-step liquid-phase exfoliation of natural flake graphite with methylene blue. Nano Res. 2012, 5, 875–887.

9

Xu, Z. W.; Li, Z.; Holt, C. M. B.; Tan, X. H.; Wang, H. L.; Amirkhiz, B. S.; Stephenson, T.; Mitlin, D. Electrochemical supercapacitor electrodes from sponge-like graphene nanoarchitectures with ultrahigh power density. J. Phys. Chem. Lett. 2012, 3, 2928–2933.

10

Englert, J. M.; Röhrl, J.; Schmidt, C. D.; Graupner, R.; Hundhausen, M.; Hauke, F.; Hirsch, A. Soluble graphene: Generation of aqueous graphene solutions aided by a perylenebisimide-based bolaamphiphile. Adv. Mater. 2009, 21, 4265–4269.

11

Chen, J. P.; Shi, W. L.; Fang, D.; Wang, T.; Huang, J.; Li, Q.; Jiang, M.; Liu, L.; Li, Q.; Dong, L. J. et al. A binary solvent system for improved liquid phase exfoliation of pristine graphene materials. Carbon 2015, 94, 405–411.

12

Chaban, V. V.; Prezhdo, O. V. Ionic and molecular liquids: Working together for robust engineering. J. Phys. Chem. Lett. 2013, 4, 1423–1431.

13

Parviz, D.; Das, S.; Ahmed, H. S. T.; Irin, F.; Bhattacharia, S.; Green, M. J. Dispersions of non-covalently functionalized graphene with minimal stabilizer. ACS Nano 2012, 6, 8857–8867.

14

Li, X. L.; Zhang, G. Y.; Bai, X. D.; Sun, X. M.; Wang, X. R.; Wang, E. G.; Dai, H. J. Highly conducting graphene sheets and Langmuir–Blodgett films. Nat. Nanotechnol. 2008, 3, 538–542.

15

Hernandez, Y.; Nicolosi, V.; Lotya, M.; Blighe, F. M.; Sun, Z. Y.; De, S.; McGovern, I. T.; Holland, B.; Byrne, M.; Gun'Ko, Y. K. et al. High-yield production of graphene by liquid-phase exfoliation of graphite. Nat. Nanotechnol. 2008, 3, 563–568.

16

Manna, K.; Huang, H. N.; Li, W. T.; Ho, Y. H.; Chiang, W. H. Toward understanding the efficient exfoliation of layered materials by water-assisted cosolvent liquid-phase exfoliation. Chem. Mater. 2016, 28, 7586–7593.

17

Oyer, A. J.; Carrillo, J.M. Y.; Hire, C. C.; Schniepp, H. C.; Asandei, A. D.; Dobrynin, A. V.; Adamson, D. H. Stabilization of graphene sheets by a structured benzene/hexafluorobenzene mixed solvent. J. Am. Chem. Soc. 2012, 134, 5018–5021.

18

Peng, L.; Xu, Z.; Liu, Z.; Wei, Y. Y.; Sun, H. Y.; Li, Z.; Zhao, X. L.; Gao, C. An iron-based green approach to 1-h production of single-layer graphene oxide. Nat. Commun. 2015, 6, 5716.

19

He, P.; Zhou, C.; Tian, S. Y.; Sun, J.; Yang, S. W.; Ding, G. Q.; Xie, X. M.; Jiang, M. H. Urea-assisted aqueous exfoliation of graphite for obtaining high-quality graphene. Chem. Commun. 2015, 51, 4651–4654.

20

Novoselov, K. S.; Jiang, D.; Schedin, F.; Booth, T. J.; Khotkevich, V. V.; Morozov, S. V.; Geim, A. K. Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. U. S. A. 2005, 102, 10451–10453.

21

Voggu, R.; Das, B.; Rout, C. S.; Rao, C. N. R. Effects of charge transfer interaction of graphene with electron donor and acceptor molecules examined using Raman spectroscopy and cognate techniques. J. Phys. Condens. Matter 2008, 20, 472204.

22

Wanko, M.; Cahangirov, S.; Shi, L.; Rohringer, P.; Lapin, Z. J.; Novotny, L.; Ayala, P.; Pichler, T.; Rubio, A. Polyyne electronic and vibrational properties under environmental interactions. Phys. Rev. B 2016, 94, 195422.

23

Qian, W.; Hao, R.; Hou, Y. L.; Tian, Y.; Shen, C. M.; Gao, H. J.; Liang, X. L. Solvothermal-assisted exfoliation process to produce graphene with high yield and high quality. Nano Res. 2009, 2, 706–712.

24

Reina, A.; Thiele, S.; Jia, X. T.; Bhaviripudi, S.; Dresselhaus, M. S.; Schaefer, J. A.; Kong, J. Growth of large-area single- and Bi-layer graphene by controlled carbon precipitation on polycrystalline Ni surfaces. Nano Res. 2009, 2, 509–516.

25

Ferrari, A. C.; Meyer, J. C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K. S.; Roth, S.; Geim, A. K. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 2006, 97, 187401.

26

Adelhelm, P.; de Jong, K. P.; de Jongh, P. E. How intimate contact with nanoporous carbon benefits the reversible hydrogen desorption from NaH and NaAlH4. Chem. Commun. 2009, 6261–6263.

27

Das, A.; Chakraborty, B.; Sood, A. K. Raman spectroscopy of graphene on different substrates and influence of defects. Bull. Mater. Sci. 2008, 31, 579–584.

28

Li, B.; Zhou, L.; Wu, D.; Peng, H. L.; Yan, K.; Zhou, Y.; Liu, Z. F. Photochemical chlorination of graphene. ACS Nano 2011, 5, 5957–5961.

29

Ferrari, A. C.; Basko, D. M. Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat. Nanotechnol. 2013, 8, 235–246.

30

Ci, L. J.; Song, L.; Jin, C. H.; Jariwala, D.; Wu, D. X.; Li, Y. J.; Srivastava, A.; Wang, Z. F.; Storr, K.; Balicas, L. et al. Atomic layers of hybridized boron nitride and graphene domains. Nat. Mater. 2010, 9, 430–435.

31

Chen, Z. P.; Ren, W. C.; Gao, L. B.; Liu, B. L.; Pei, S. F.; Cheng, H. M. Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nat. Mater. 2011, 10, 424–428.

32

Bruna, M.; Ott, A. K.; Ijäs, M.; Yoon, D.; Sassi, U.; Ferrari, A. C. Doping dependence of the Raman spectrum of defected graphene. Acs Nano 2014, 8, 7432–7441.

33

Wu, Y. P.; Wang, B.; Ma, Y. F.; Huang, Y. H.; Li, N.; Zhang, F.; Chen, Y. S. Efficient and large-scale synthesis of few-layered graphene using an arc-discharge method and conductivity studies of the resulting films. NanoRes. 2010, 3, 661–669.

34

Cai, J. M.; Ruffieux, P.; Jaafar, R.; Bieri, M.; Braun, T.; Blankenburg, S.; Muoth, M.; Seitsonen, A. P.; Saleh, M.; Feng, X. L. et al. Atomically precise bottom-up fabrication of graphene nanoribbons. Nature 2010, 466, 470–473.

35

Vadukumpully, S.; Paul, J.; Valiyaveettil, S. Cationic surfactant mediated exfoliation of graphite into graphene flakes. Carbon 2009, 47, 3288–3294.

36

Cançado, L. G.; Jorio, A.; Ferreira, E. H. M.; Stavale, F.; Achete, C. A.; Capaz, R. B.; Moutinho, M. V. O.; Lombardo, A.; Kulmala, T. S; Ferrari, A. C. Quantifying defects in graphene via Raman spectroscopy at different excitation energies. NanoLett. 2011, 11, 3190–3196.

37

Herron, C. R.; Coleman, K. S.; Edwards, R. S.; Mendis, B. G. Simple and scalable route for the 'bottom-up'synthesis of few-layer graphene platelets and thin films. J. Mater. Chem. 2011, 21, 3378–3383.

38

Chen, J. P.; Shi, W. L.; Chen, Y. M.; Yang, Q. L.; Wang, M. K.; Liu, B.; Tang, Z.; Jiang, M.; Fang, D.; Xiong, C. X. Eco-friendly exfoliation of graphite into pristine graphene with little defect by a facile physical treatment. Appl. Phys. Lett. 2016, 108, 073105.

39

Eckmann, A.; Felten, A.; Mishchenko, A.; Britnell, L.; Krupke, R.; Novoselov, K. S. Casiraghi C. Probing the nature of defects in graphene by Raman spectroscopy. Nano Lett. 2012, 12, 3925–3930.

40

Levy, F. L. A modified Maxwell–Eucken equation for calculating the thermal conductivity of two-component solutions or mixtures. Int. J. Refrig. 1981, 4, 223–225.

41

Agari, Y.; Uno, T. Estimation on thermal conductivities of filled polymers. J. Appl. Polym. Sci. 1986, 32, 5705–5712.

42

Kumlutaş, D.; Tavman, İ. H.; Çoban, M. T. Thermal conductivity of particle filled polyethylene composite materials. Compos. Sci. Technol. 2003, 63, 113–117.

43

Hatta, H.; Taya, M.; Kulacki, F. A.; Harder, J. F. Thermal diffusivities of composites with various types of filler. J. Compos. Mater. 1992, 26, 612–625.

44

Zhou, S. X.; Xu, J. Z.; Yang, Q. H.; Chiang, S.; Li, B. H.; Du, H. D.; Xu, C. J.; Kang, F. Y. Experiments and modeling of thermal conductivity of flake graphite/polymer composites affected by adding carbon-based nano-fillers. Carbon 2013, 57, 452–459.

Nano Research
Pages 820-830
Cite this article:
Chen J, Shi W, Gao Z, et al. Facile preparation of pristine graphene using urea/glycerol as efficient stripping agents. Nano Research, 2018, 11(2): 820-830. https://doi.org/10.1007/s12274-017-1691-3

667

Views

22

Crossref

N/A

Web of Science

21

Scopus

1

CSCD

Altmetrics

Received: 03 March 2017
Revised: 17 May 2017
Accepted: 22 May 2017
Published: 19 August 2017
© Tsinghua University Press and Springer-Verlag GmbH Germany 2017
Return