Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Large-scale exfoliation of defect-free and few-layer graphene by an inexpensive and environmentally-friendly route has been a significant challenge for a long time. Here we show that high-quality, few-layer graphene with high stability and low defect content can be obtained from natural graphite via a simple stirring process in urea/glycerol, with yields of up to 12 wt.%. We also demonstrate that this facile method can be applied to the exfoliation of other two-dimensional materials, such as molybdenum disulfide and boron nitride. The as-prepared graphene was further composited with polyvinylidene fluoride (PVDF) and the composite exhibited a low percolation threshold of 0.05 vol.%. The incorporation of low (4.5 vol.%) graphene amounts led to a significant increase in the thermal conductivity of the graphene–PVDF composites.
Oostinga, J. B.; Heersche, H. B.; Liu, X. L.; Morpurgo, A. F.; Vandersypen, L. M. K. Gate-induced insulating state in bilayer graphene devices. Nat. Mater. 2008, 7, 151–157.
Stankovich, S.; Dikin, D. A.; Dommett, G. H. B.; Kohlhaas, K. M.; Zimney, E. J.; Stach, E. A.; Piner, R. D.; Nguyen, S. T.; Ruoff, R. S. Graphene-based composite materials. Nature 2006, 442, 282–286.
Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.
Li, X. S.; Cai, W. W.; An, J.; Kim, S.; Nah, J.; Yang, D. X.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E.; Banerjee, S. K. et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 2009, 324, 1312–1314.
Li, X. S.; Cai, W. W.; Colombo, L.; Ruoff, R. S. Evolution of graphene growth on Ni and Cu by carbon isotope labeling. Nano Lett. 2009, 9, 4268–4272.
Paton, K. R.; Varrla, E.; Backes, C.; Smith, R. J.; Khan, U.; O'Neill, A.; Boland, C.; Lotya, M.; Istrate, O. M.; King, P. et al. Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids. Nat Mater 2014, 13, 624–630.
Li, Y.; Fan, X. B.; Qi, J. J.; Ji, J. Y.; Wang, S. L.; Zhang, G. L.; Zhang, F. B. Palladium nanoparticle-graphene hybrids as active catalysts for the Suzuki reaction. Nano Res. 2010, 3, 429–437.
Zhang, D. D.; Fu, L.; Liao, L.; Liu, N.; Dai, B. Y.; Zhang, C. X. Preparation, characterization, and application of electrochemically functional graphene nanocomposites by one-step liquid-phase exfoliation of natural flake graphite with methylene blue. Nano Res. 2012, 5, 875–887.
Xu, Z. W.; Li, Z.; Holt, C. M. B.; Tan, X. H.; Wang, H. L.; Amirkhiz, B. S.; Stephenson, T.; Mitlin, D. Electrochemical supercapacitor electrodes from sponge-like graphene nanoarchitectures with ultrahigh power density. J. Phys. Chem. Lett. 2012, 3, 2928–2933.
Englert, J. M.; Röhrl, J.; Schmidt, C. D.; Graupner, R.; Hundhausen, M.; Hauke, F.; Hirsch, A. Soluble graphene: Generation of aqueous graphene solutions aided by a perylenebisimide-based bolaamphiphile. Adv. Mater. 2009, 21, 4265–4269.
Chen, J. P.; Shi, W. L.; Fang, D.; Wang, T.; Huang, J.; Li, Q.; Jiang, M.; Liu, L.; Li, Q.; Dong, L. J. et al. A binary solvent system for improved liquid phase exfoliation of pristine graphene materials. Carbon 2015, 94, 405–411.
Chaban, V. V.; Prezhdo, O. V. Ionic and molecular liquids: Working together for robust engineering. J. Phys. Chem. Lett. 2013, 4, 1423–1431.
Parviz, D.; Das, S.; Ahmed, H. S. T.; Irin, F.; Bhattacharia, S.; Green, M. J. Dispersions of non-covalently functionalized graphene with minimal stabilizer. ACS Nano 2012, 6, 8857–8867.
Li, X. L.; Zhang, G. Y.; Bai, X. D.; Sun, X. M.; Wang, X. R.; Wang, E. G.; Dai, H. J. Highly conducting graphene sheets and Langmuir–Blodgett films. Nat. Nanotechnol. 2008, 3, 538–542.
Hernandez, Y.; Nicolosi, V.; Lotya, M.; Blighe, F. M.; Sun, Z. Y.; De, S.; McGovern, I. T.; Holland, B.; Byrne, M.; Gun'Ko, Y. K. et al. High-yield production of graphene by liquid-phase exfoliation of graphite. Nat. Nanotechnol. 2008, 3, 563–568.
Manna, K.; Huang, H. N.; Li, W. T.; Ho, Y. H.; Chiang, W. H. Toward understanding the efficient exfoliation of layered materials by water-assisted cosolvent liquid-phase exfoliation. Chem. Mater. 2016, 28, 7586–7593.
Oyer, A. J.; Carrillo, J.M. Y.; Hire, C. C.; Schniepp, H. C.; Asandei, A. D.; Dobrynin, A. V.; Adamson, D. H. Stabilization of graphene sheets by a structured benzene/hexafluorobenzene mixed solvent. J. Am. Chem. Soc. 2012, 134, 5018–5021.
Peng, L.; Xu, Z.; Liu, Z.; Wei, Y. Y.; Sun, H. Y.; Li, Z.; Zhao, X. L.; Gao, C. An iron-based green approach to 1-h production of single-layer graphene oxide. Nat. Commun. 2015, 6, 5716.
He, P.; Zhou, C.; Tian, S. Y.; Sun, J.; Yang, S. W.; Ding, G. Q.; Xie, X. M.; Jiang, M. H. Urea-assisted aqueous exfoliation of graphite for obtaining high-quality graphene. Chem. Commun. 2015, 51, 4651–4654.
Novoselov, K. S.; Jiang, D.; Schedin, F.; Booth, T. J.; Khotkevich, V. V.; Morozov, S. V.; Geim, A. K. Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. U. S. A. 2005, 102, 10451–10453.
Voggu, R.; Das, B.; Rout, C. S.; Rao, C. N. R. Effects of charge transfer interaction of graphene with electron donor and acceptor molecules examined using Raman spectroscopy and cognate techniques. J. Phys. Condens. Matter 2008, 20, 472204.
Wanko, M.; Cahangirov, S.; Shi, L.; Rohringer, P.; Lapin, Z. J.; Novotny, L.; Ayala, P.; Pichler, T.; Rubio, A. Polyyne electronic and vibrational properties under environmental interactions. Phys. Rev. B 2016, 94, 195422.
Qian, W.; Hao, R.; Hou, Y. L.; Tian, Y.; Shen, C. M.; Gao, H. J.; Liang, X. L. Solvothermal-assisted exfoliation process to produce graphene with high yield and high quality. Nano Res. 2009, 2, 706–712.
Reina, A.; Thiele, S.; Jia, X. T.; Bhaviripudi, S.; Dresselhaus, M. S.; Schaefer, J. A.; Kong, J. Growth of large-area single- and Bi-layer graphene by controlled carbon precipitation on polycrystalline Ni surfaces. Nano Res. 2009, 2, 509–516.
Ferrari, A. C.; Meyer, J. C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K. S.; Roth, S.; Geim, A. K. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 2006, 97, 187401.
Adelhelm, P.; de Jong, K. P.; de Jongh, P. E. How intimate contact with nanoporous carbon benefits the reversible hydrogen desorption from NaH and NaAlH4. Chem. Commun. 2009, 6261–6263.
Das, A.; Chakraborty, B.; Sood, A. K. Raman spectroscopy of graphene on different substrates and influence of defects. Bull. Mater. Sci. 2008, 31, 579–584.
Li, B.; Zhou, L.; Wu, D.; Peng, H. L.; Yan, K.; Zhou, Y.; Liu, Z. F. Photochemical chlorination of graphene. ACS Nano 2011, 5, 5957–5961.
Ferrari, A. C.; Basko, D. M. Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat. Nanotechnol. 2013, 8, 235–246.
Ci, L. J.; Song, L.; Jin, C. H.; Jariwala, D.; Wu, D. X.; Li, Y. J.; Srivastava, A.; Wang, Z. F.; Storr, K.; Balicas, L. et al. Atomic layers of hybridized boron nitride and graphene domains. Nat. Mater. 2010, 9, 430–435.
Chen, Z. P.; Ren, W. C.; Gao, L. B.; Liu, B. L.; Pei, S. F.; Cheng, H. M. Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nat. Mater. 2011, 10, 424–428.
Bruna, M.; Ott, A. K.; Ijäs, M.; Yoon, D.; Sassi, U.; Ferrari, A. C. Doping dependence of the Raman spectrum of defected graphene. Acs Nano 2014, 8, 7432–7441.
Wu, Y. P.; Wang, B.; Ma, Y. F.; Huang, Y. H.; Li, N.; Zhang, F.; Chen, Y. S. Efficient and large-scale synthesis of few-layered graphene using an arc-discharge method and conductivity studies of the resulting films. NanoRes. 2010, 3, 661–669.
Cai, J. M.; Ruffieux, P.; Jaafar, R.; Bieri, M.; Braun, T.; Blankenburg, S.; Muoth, M.; Seitsonen, A. P.; Saleh, M.; Feng, X. L. et al. Atomically precise bottom-up fabrication of graphene nanoribbons. Nature 2010, 466, 470–473.
Vadukumpully, S.; Paul, J.; Valiyaveettil, S. Cationic surfactant mediated exfoliation of graphite into graphene flakes. Carbon 2009, 47, 3288–3294.
Cançado, L. G.; Jorio, A.; Ferreira, E. H. M.; Stavale, F.; Achete, C. A.; Capaz, R. B.; Moutinho, M. V. O.; Lombardo, A.; Kulmala, T. S; Ferrari, A. C. Quantifying defects in graphene via Raman spectroscopy at different excitation energies. NanoLett. 2011, 11, 3190–3196.
Herron, C. R.; Coleman, K. S.; Edwards, R. S.; Mendis, B. G. Simple and scalable route for the 'bottom-up'synthesis of few-layer graphene platelets and thin films. J. Mater. Chem. 2011, 21, 3378–3383.
Chen, J. P.; Shi, W. L.; Chen, Y. M.; Yang, Q. L.; Wang, M. K.; Liu, B.; Tang, Z.; Jiang, M.; Fang, D.; Xiong, C. X. Eco-friendly exfoliation of graphite into pristine graphene with little defect by a facile physical treatment. Appl. Phys. Lett. 2016, 108, 073105.
Eckmann, A.; Felten, A.; Mishchenko, A.; Britnell, L.; Krupke, R.; Novoselov, K. S. Casiraghi C. Probing the nature of defects in graphene by Raman spectroscopy. Nano Lett. 2012, 12, 3925–3930.
Levy, F. L. A modified Maxwell–Eucken equation for calculating the thermal conductivity of two-component solutions or mixtures. Int. J. Refrig. 1981, 4, 223–225.
Agari, Y.; Uno, T. Estimation on thermal conductivities of filled polymers. J. Appl. Polym. Sci. 1986, 32, 5705–5712.
Kumlutaş, D.; Tavman, İ. H.; Çoban, M. T. Thermal conductivity of particle filled polyethylene composite materials. Compos. Sci. Technol. 2003, 63, 113–117.
Hatta, H.; Taya, M.; Kulacki, F. A.; Harder, J. F. Thermal diffusivities of composites with various types of filler. J. Compos. Mater. 1992, 26, 612–625.
Zhou, S. X.; Xu, J. Z.; Yang, Q. H.; Chiang, S.; Li, B. H.; Du, H. D.; Xu, C. J.; Kang, F. Y. Experiments and modeling of thermal conductivity of flake graphite/polymer composites affected by adding carbon-based nano-fillers. Carbon 2013, 57, 452–459.