Journal Home > Volume 11 , Issue 2

Metal oxide/graphene nanocomposites are emerging as promising materials for developing room-temperature gas sensors. However, the unsatisfactory performances owing to the relatively low sensitivity, slow response, and recovery kinetics limit their applications. Herein, a highly sensitive and rapidly responding room-temperature NO2 gas sensor based on WO3 nanorods/sulfonated reduced graphene oxide (S-rGO) was prepared via a simple and cost-effective hydrothermal method. The optimal sensor response of the WO3/S-rGO sensor toward 20 ppm NO2 is 149% in 6 s, which is 4.7 times higher and 100 times faster than that of the corresponding WO3/rGO sensors. In addition, the sensor exhibits excellent reproducibility, selectivity, and extremely fast recovery kinetics. The mechanism of the WO3/S-rGO nanocomposite gas sensor is investigated in detail. In addition to the high transport capability of S-rGO as well as its excellent NO2 adsorption ability, the superior sensing performance of the S-rGO/WO3 sensor can be attributed to the favorable charge transfer occurring at the S-rGO/WO3 interfaces. We believe that the strategy of compositing a metal oxide with functionalized graphene provides a new insight for the future development of room-temperature gas sensors.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Highly sensitive and rapidly responding room-temperature NO2 gas sensors based on WO3 nanorods/sulfonated graphene nanocomposites

Show Author's information Tingting WangJuanyuan Hao( )Shengliang ZhengQuan SunDi ZhangYou Wang( )
School of Materials Science and EngineeringHarbin Institute of TechnologyHarbin150001China

Abstract

Metal oxide/graphene nanocomposites are emerging as promising materials for developing room-temperature gas sensors. However, the unsatisfactory performances owing to the relatively low sensitivity, slow response, and recovery kinetics limit their applications. Herein, a highly sensitive and rapidly responding room-temperature NO2 gas sensor based on WO3 nanorods/sulfonated reduced graphene oxide (S-rGO) was prepared via a simple and cost-effective hydrothermal method. The optimal sensor response of the WO3/S-rGO sensor toward 20 ppm NO2 is 149% in 6 s, which is 4.7 times higher and 100 times faster than that of the corresponding WO3/rGO sensors. In addition, the sensor exhibits excellent reproducibility, selectivity, and extremely fast recovery kinetics. The mechanism of the WO3/S-rGO nanocomposite gas sensor is investigated in detail. In addition to the high transport capability of S-rGO as well as its excellent NO2 adsorption ability, the superior sensing performance of the S-rGO/WO3 sensor can be attributed to the favorable charge transfer occurring at the S-rGO/WO3 interfaces. We believe that the strategy of compositing a metal oxide with functionalized graphene provides a new insight for the future development of room-temperature gas sensors.

Keywords: room temperature, metal oxide/sulfonated reduced graphene, NO2 gas sensing, rapidly responding, WO3 nanorods

References(49)

1

Guarnieri, M.; Balmes, J. R. Outdoor air pollution and asthma. Lancet 2014, 383, 1581-1592.

2

Ou, J. Z.; Yao, C. K.; Rotbart, A.; Muir, J. G.; Gibson, P. R.; Kalantar-zadeh, K. Human intestinal gas measurement systems: In vitro fermentation and gas capsules. Trends Biotechnol. 2015, 33, 208-213.

3

Puckett, J. L.; George, S. C. Partitioned exhaled nitric oxide to non-invasively assess asthma. Respir. Physiol. Neurobiol. 2008, 163, 166-177.

4

Andringa, A. M.; Piliego, C.; Katsouras, I.; Blom, P. W. M.; de Leeuw, D. M. NO2 detection and real-time sensing with field-effect transistors. Chem. Mater. 2014, 26, 773-785.

5

Miller, D. R.; Akbar, S. A.; Morris, P. A. Nanoscale metal oxide-based heterojunctions for gas sensing: A review. Sensor. Actuat. B: Chem. 2014, 204, 250-272.

6

Xiong, Y.; Chen, W. P.; Li, Y. S.; Cui, P.; Guo, S. S.; Chen, W.; Tang, Z. L.; Yan, Z. J.; Zhang, Z. Y. Contrasting room-temperature hydrogen sensing capabilities of Pt-SnO2 and Pt-TiO2 composite nanoceramics. Nano Res. 2016, 9, 3528-3535.

7

Zhang, J.; Liu, X. H.; Neri, G.; Pinna, N. Nanostructured materials for room-temperature gas sensors. Adv. Mater. 2016, 28, 795-831.

8

Zhang, H.; Feng, J. C.; Fei, T.; Liu, S.; Zhang, T. SnO2 nanoparticles-reduced graphene oxide nanocomposites for NO2 sensing at low operating temperature. Sensor. Actuat. B: Chem. 2014, 190, 472-478.

9

Sonker, R. K.; Sabhajeet, S. R.; Singh, S.; Yadav, B. C. Synthesis of ZnO nanopetals and its application as NO2 gas sensor. Mater. Lett. 2015, 152, 189-191.

10

Kida, T.; Nishiyama, A.; Hua, Z. Q.; Suematsu, K.; Yuasa, M.; Shimanoe, K. WO3 nanolamella gas sensor: Porosity control using SnO2 nanoparticles for enhanced NO2 sensing. Langmuir 2014, 30, 2571-2579.

11

Akiyama, M.; Tamak, J.; Miura, N.; Yamazoe, N. Tungsten oxide-based semiconductor sensor highly sensitive to NO and NO2. Chem. Lett. 1991, 20, 1611-1614.

12

You, Y.; Sun, Y. F.; Ma, J.; Guan, Y.; Sun, J. M.; Du, Y.; Lu, G. Y. Highly sensitive NO2 sensor based on square-like tungsten oxide prepared with hydrothermal treatment. Sensor. Actuat. B: Chem. 2011, 157, 401-407.

13

Srivastava, S.; Jain, K.; Singh, V. N.; Singh, S.; Vijayan, N.; Dilawar, N.; Gupta, G.; Senguttuvan, T. D. Faster response of NO2 sensing in graphene-WO3 nanocomposites. Nanotechnology 2012, 23, 205501.

14

An, X. Q.; Yu, J. C.; Wang, Y.; Hu, Y. M.; Yu, X. L.; Zhang, G. J. WO3 nanorods/graphene nanocomposites for high-efficiency visible-light-driven photocatalysis and NO2 gas sensing. J. Mater. Chem. 2012, 22, 8525-8531.

15

Geim, A. K.; Novoselov, K. S. The rise of graphene. Nature 2007, 6, 183-191.

16

Katsnelson, M. I. Graphene: Carbon in two dimensions. Mater. Today 2007, 10, 20-27.

17

Rao, C. N. R.; Biswas, K.; Subrahmanyam, K. S.; Govindaraj, A. Graphene, the new nanocarbon. J. Mater. Chem. 2009, 19, 2457-2469.

18

Cagliani, A.; Mackenzie, D. M. A.; Tschammer, L. K.; Pizzocchero, F.; Almdal, K.; Bøggild, P. Large-area nanopatterned graphene for ultrasensitive gas sensing. Nano Res. 2014, 7, 743-754.

19

Tammanoon, N.; Wisitsoraat, A.; Sriprachuabwong, C.; Phokharatkul, D.; Tuantranont, A.; Phanichphant, S.; Liewhiran, C. Ultrasensitive NO2 sensor based on Ohmic metal-semiconductor interfaces of electrolytically exfoliated graphene/flame-spray-made SnO2 nanoparticles composite operating at low temperatures. ACS Appl. Mater. Interfaces 2015, 7, 24338-24352.

20

Yi, J.; Lee, J. M.; Park, W. I. Vertically aligned ZnO nanorods and graphene hybrid architectures for high-sensitive flexible gas sensors. Sensor. Actuat. B: Chem. 2011, 155, 264-269.

21

Choi, S. J.; Fuchs, F.; Demadrille, R.; Grévin, B.; Jang, B. H.; Lee, S. J.; Lee, J. H.; Tuller, H. L.; Kim, I. D. Fast responding exhaled-breath sensors using WO3 hemitubes functionalized by graphene-based electronic sensitizers for diagnosis of diseases. ACS Appl. Mater. Interfaces 2014, 6, 9061-9070.

22

Yang, W.; Wan, P.; Zhou, X. D.; Hu, J. M.; Guan, Y. F.; Feng, L. Additive-free synthesis of In2O3 cubes embedded into graphene sheets and their enhanced NO2 sensing performance at room temperature. ACS Appl. Mater. Interfaces 2014, 6, 21093-21100.

23

Deng, S. Z.; Tjoa, V.; Fan, H. M.; Tan, H. R.; Sayle, D. C.; Olivo, M.; Mhaisalkar, S.; Wei, J.; Sow, C. H. Reduced graphene oxide conjugated Cu2O nanowire mesocrystals for high-performance NO2 gas sensor. J. Am. Chem. Soc. 2012, 134, 4905-4917.

24

Xia, Y.; Wang, J.; Xu, J. L.; Li, X.; Xie, D.; Xiang, L.; Komarneni, S. Confined formation of ultrathin ZnO nanorods/ reduced graphene oxide mesoporous nanocomposites for high-performance room-temperature NO2 sensors. ACS Appl. Mater. Interfaces 2016, 8, 35454-35463.

25

Liu, X.; Cui, J. S.; Sun, J. B.; Zhang, X. T. 3D graphene aerogel-supported SnO2 nanoparticles for efficient detection of NO2. RSC Adv. 2014, 4, 22601-22605.

26

Liu, S.; Yu, B.; Zhang, H.; Fei, T.; Zhang, T. Enhancing NO2 gas sensing performances at room temperature based on reduced graphene oxide-ZnO nanoparticles hybrids. Sensor. Actuat. B: Chem. 2014, 202, 272-278.

27

Jie, X. Q.; Zeng, D. W.; Zhang, J.; Xu, K.; Wu, J. J.; Zhu, B. K.; Xie, C. S. Graphene-wrapped WO3 nanospheres with room-temperature NO2 sensing induced by interface charge transfer. Sensor. Actuat. B: Chem. 2015, 220, 201-209.

28

Huang, L.; Wang, Z. P.; Zhang, J. K; Pu, J. L.; Lin, Y. J.; Xu, S. H.; Chen, Q.; Shi, W. Z. Fully printed, rapid-response sensors based on chemically modified graphene for detecting NO2 at room temperature. ACS Appl. Mater. Interfaces 2014, 6, 7426-7433.

29

Yuan, W. J.; Liu, A. R.; Huang, L; Li, C; Shi, G. Q. High-performance NO2 sensors based on chemically modified graphene. Adv. Mater. 2013, 25, 766-771.

30

Liu, S.; Wang, Z. Y.; Zhang, Y; Li, J. C; Zhang, T. Sulfonated graphene anchored with tin oxide nanoparticles for detection of nitrogen dioxide at room temperature with enhanced sensing performances. Sensor. Actuat. B: Chem. 2016, 228, 134-143.

31

Si, Y. C.; Samulski, E. T. Synthesis of water soluble graphene. Nano Lett. 2008, 8, 1679-1682.

32

Hummers Jr, W. S.; Offeman, R. E. Preparation of graphitic oxide. J. Am. Chem. Soc. 1958, 80, 1339.

33

Wang, S.; Ang, P. K.; Wang, Z. Q.; Tang, A. L. L.; Thong, J. T. L.; Loh, K. P. High mobility, printable, and solution-processed graphene electronics. Nano Lett. 2010, 10, 92-98.

34

Dong, B.; Zhong, D. Y.; Chi, L. F.; Fuchs, H. Patterning of conducting polymers based on a random copolymer strategy: Toward the facile fabrication of nanosensors exclusively based on polymers. Adv. Mater. 2005, 17, 2736-2741.

35

Dong, B.; Lu, N.; Zelsmann M.; Kehagias N.; Fuchs H.; Torres, C. M. S.; Chi, L. F. Fabrication of high-density, large-area conducting-polymer nanostructures. Adv. Funct. Mater. 2006, 16, 1937-1942.

36

Zhou, W.; Guo, Y. T.; Zhang, H.; Su, Y. J.; Liu, M.; Dong, B. A highly sensitive ammonia sensor based on spinous core-shell PCL-PANI fibers. J. Mater. Sci. 2017, 52, 6554-6566.

37

Jung, I.; Pelton, M.; Piner, R.; Dikin, D. A.; Stankovich, S.; Watcharotone, S.; Hausner, M.; Ruoff, R. S. Simple approach for high-contrast optical imaging and characterization of graphene-based sheets. Nano Lett. 2007, 7, 3569-3575.

38

Li, D.; Müller, M. B.; Gilje, S.; Kaner, R. B.; Wallace, G. G. Processable aqueous dispersions of graphene nanosheets. Nat. Nanotechnol. 2008, 3, 101-105.

39

Xu, Y. X.; Bai, H.; Lu, G. W.; Li, C.; Shi, G. Q. Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets. J. Am. Chem. Soc. 2008, 130, 5856-5857.

40

Lu, J. L.; Li, Y. H.; Li, S. L.; Jiang, S. P. Self-assembled platinum nanoparticles on sulfonic acid-grafted graphene as effective electrocatalysts for methanol oxidation in direct methanol fuel cells. Sci. Rep. 2016, 6, 21530.

41

Jiang, D. D.; Yao, Q.; McKinney, M. A.; Wilkie, C. A. TGA/FTIR studies on the thermal degradation of some polymeric sulfonic and phosphonic acids and their sodium salts. Polym. Degrad. Stabil. 1999, 63, 423-434.

42

Yin, W. S.; Ruckenstein, E. Soluble polyaniline co-doped with dodecyl benzene sulfonic acid and hydrochloric acid. Synthetic Met. 2000, 108, 39-46.

43

Gao, J.; Liu, F.; Liu, Y. L.; Ma, N.; Wang, Z. Q.; Zhang, X. Environment-friendly method to produce graphene that employs vitamin C and amino acid. Chem. Mater. 2010, 22, 2213-2218.

44

Akhavan, O.; Choobtashani, M.; Ghaderi, E. Protein degradation and RNA efflux of viruses photocatalyzed by graphene-tungsten oxide composite under visible light irradiation. J. Phys. Chem. C 2012, 116, 9653-9659.

45

Guo, J. J.; Li, Y.; Zhu, S. M.; Chen, Z. X.; Liu, Q. L.; Zhang, D.; Song, D. M.; Song, D. M. Synthesis of WO3@graphene composite for enhanced photocatalytic oxygen evolution from water. RSC Adv. 2012, 2, 1356-1363.

46

Zhu, S. M.; Liu, X. Y.; Chen, Z. X.; Liu, C. J.; Feng, C. L.; Gu, J. J.; Liu, Q. L.; Zhang, D. Synthesis of Cu-doped WO3 materials with photonic structures for high performance sensors, J. Mater. Chem. 2010, 20, 9126-9132.

47

Manna, A. K.; Pati, S. K. Tuning the electronic structure of graphene by molecular charge transfer: A computational study. Chem. Asian J. 2009, 4, 855-860.

48

Chen, N.; Li, X. G.; Wang, X. Y.; Yu, J.; Wang, J.; Tang, Z. N.; Akbar, S. A. Enhanced room temperature sensing of Co3O4-intercalated reduced graphene oxide based gas sensors. Sensor. Actuat. B: Chem. 2013, 188, 902-908.

49

Huang, Q. W.; Zeng, D. W.; Li, H. Y.; Xie, C. S. Room temperature formaldehyde sensors with enhanced performance, fast response and recovery based on zinc oxide quantum dots/graphene nanocomposites. Nanoscale 2012, 4, 5651-5658.

File
nr-11-2-791_ESM.pdf (1.5 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 06 April 2017
Revised: 14 May 2017
Accepted: 17 May 2017
Published: 27 July 2017
Issue date: February 2018

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany 2017

Acknowledgements

Acknowledgements

This work is funded by Key Laboratory of Micro-systems and Micro-structures Manufacturing of Ministry of Education, Harbin Institute of Technology (No. 2017KM007), the open Project of State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (No. HCK201704), and the National Natural Science Foundation of China (NSFC) (No. 21101043).

Return