Journal Home > Volume 11 , Issue 2

Flexible wearable electronics, when combined with outstanding thermoelectric properties, are promising candidates for future energy harvesting systems. Graphene and its macroscopic assemblies (e.g., graphene-based fibers and films) have thus been the subject of numerous studies because of their extraordinary electrical and mechanical properties. However, these assemblies have not been considered suitable for thermoelectric applications owing to their high intrinsic thermal conductivity. In this study, bromine doping is demonstrated to be an effective method for significantly enhancing the thermoelectric properties of graphene fibers. Doping enhances phonon scattering due to the increased defects and thus decreases the thermal conductivity, while the electrical conductivity and Seebeck coefficient are increased by the Fermi level downshift. As a result, the maximum figure of merit is 2.76 × 10-3, which is approximately four orders of magnitude larger than that of the undoped fibers throughout the temperature range. Moreover, the room temperature power factor is shown to increase up to 624 μW·m-1·K-2, which is higher than that of any other material solely composed of carbon nanotubes and graphene. The enhanced thermoelectric properties indicate the promising potential for graphene fibers in wearable energy harvesting systems.


menu
Abstract
Full text
Outline
About this article

Chemically doped macroscopic graphene fibers with significantly enhanced thermoelectricproperties

Show Author's information Weigang Ma1,§Yingjun Liu2,§Shen Yan1,3,§Tingting Miao4Shaoyi Shi1Zhen Xu2Xing Zhang1( )Chao Gao2( )
Key Laboratory for Thermal Science and Power Engineering of Ministry of EducationDepartment of Engineering MechanicsTsinghua UniversityBeijing100084China
MOE Key Laboratory of Macromolecular Synthesis and FunctionalizationDepartment of Polymer Science and EngineeringKey Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang ProvinceZhejiang UniversityHangzhou310027China
Department of Thermal EngineeringTsinghua UniversityBeijing100084China
Key Laboratory of Process Fluid Filtration and SeparationCollege of Mechanical and Transportation EngineeringChina University of Petroleum-BeijingBeijing102249China

§ Weigang Ma, Yingjun Liu, and Shen Yan contributed equally to this work.

Abstract

Flexible wearable electronics, when combined with outstanding thermoelectric properties, are promising candidates for future energy harvesting systems. Graphene and its macroscopic assemblies (e.g., graphene-based fibers and films) have thus been the subject of numerous studies because of their extraordinary electrical and mechanical properties. However, these assemblies have not been considered suitable for thermoelectric applications owing to their high intrinsic thermal conductivity. In this study, bromine doping is demonstrated to be an effective method for significantly enhancing the thermoelectric properties of graphene fibers. Doping enhances phonon scattering due to the increased defects and thus decreases the thermal conductivity, while the electrical conductivity and Seebeck coefficient are increased by the Fermi level downshift. As a result, the maximum figure of merit is 2.76 × 10-3, which is approximately four orders of magnitude larger than that of the undoped fibers throughout the temperature range. Moreover, the room temperature power factor is shown to increase up to 624 μW·m-1·K-2, which is higher than that of any other material solely composed of carbon nanotubes and graphene. The enhanced thermoelectric properties indicate the promising potential for graphene fibers in wearable energy harvesting systems.

Keywords: thermal conductivity, electrical conductivity, Seebeck coefficient, thermoelectric properties, macroscopic graphene fiber, bromine doping

References(74)

1

Zeng, W.; Shu, L.; Li, Q.; Chen, S.; Wang, F.; Tao, X. M. Fiber-based wearable electronics: A review of materials, fabrication, devices, and applications. Adv. Mater. 2014, 26, 5310-5336.

2

Li, Z.; Liu, Z.; Sun, H. Y.; Gao, C. Superstructured assembly of nanocarbons: Fullerenes, nanotubes, and graphene. Chem. Rev. 2015, 115, 7046-7117.

3

Xu, Z.; Gao, C. Graphene in macroscopic order: Liquid crystals and wet-spun fibers. Acc. Chem. Res. 2014, 47, 1267-1276.

4

Cheng, H. H.; Hu, C. G.; Zhao, Y.; Qu, L. T. Graphene fiber: A new material platform for unique applications. NPG Asia Mater. 2014, 6, e113.

5

Xu, Z.; Gao, C. Graphene chiral liquid crystals and macroscopic assembled fibres. Nat. Commun. 2011, 2, 571.

6

Kou, L.; Huang, T. Q.; Zheng, B. N.; Han, Y.; Zhao, X. L.; Gopalsamy, K.; Sun, H. Y.; Gao, C. Coaxial wet-spun yarn supercapacitors for high-energy density and safe wearable electronics. Nat. Commun. 2014, 5, 3754.

7

Liu, Y. J.; Xu, Z.; Gao, W. W.; Cheng, Z. D.; Gao, C. Graphene and other 2D colloids: Liquid crystalsand macroscopic fibers. Adv. Mater. 2017, 29, 1606794.

8

Liu, Y. J.; Liang, H.; Xu, Z.; Xi, J. B.; Chen, G. F.; Gao, W. W.; Xue, M. Q.; Gao, C. Superconducting continuous graphene fibers via calcium intercalation. ACS Nano 2017, 11, 4301-4306, DOI: 10.1021/acsnano.7b01491.

9

Balandin, A. A.; Ghosh, S.; Bao, W. Z.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C. N. Superior thermal conductivity of single-layer graphene. Nano Lett. 2008, 8, 902-907.

10

Ghosh, S.; Bao, W. Z.; Nika, D. L.; Subrina, S.; Pokatilov, E. P.; Lau, C. N.; Balandin, A. A. Dimensional crossover of thermal transport in few-layer graphene. Nat. Mater. 2010, 9, 555-558.

11

Mazzamuto, F.; Nguyen, V. H.; Apertet, Y.; Caër, C.; Chassat, C.; Saint-Martin, J.; Dollfus, P. Enhanced thermoelectric properties in graphene nanoribbons by resonant tunneling of electrons. Phys. Rev. B 2011, 83, 235426.

12

Chang, P. H.; Nikolić, B. K. Edge currents and nanopore arrays in zigzag and chiral graphene nanoribbons as a route toward high-ZT thermoelectrics. Phys. Rev. B 2012, 86, 041406.

13

Sevinçli, H.; Sevik, C.; Çağın, T.; Cuniberti, G. A bottom-up route to enhance thermoelectric figures of merit in graphene nanoribbons. Sci. Rep. 2013, 3, 1228.

14

Haskins, J.; Kınacı, A.; Sevik, C.; Sevinçli, H.; Cuniberti, G.; Çağın, T. Control of thermal and electronic transport in defect-engineered graphene nanoribbons. ACS Nano 2011, 5, 3779-3787.

15

Chen, S. S.; Wu, Q. Z.; Mishra, C.; Kang, J. Y.; Zhang, H. J.; Cho, K.; Cai, W. W.; Balandin, A. A.; Ruoff, R. S. Thermal conductivity of isotopically modified graphene. Nat. Mater. 2012, 11, 203-207.

16

Wei, N.; Xu, L. Q.; Wang, H. Q.; Zheng, J. C. Strain engineering of thermal conductivity in graphene sheets and nanoribbons: A demonstration of magic flexibility. Nanotechnology 2011, 22, 105705.

17

Avery, A. D.; Zhou, B. H.; Lee, J.; Lee, E. S.; Miller, E. M.; Ihly, R.; Wesenberg, D.; Mistry, K. S.; Guillot, S. L.; Zink, B. L. et al. Tailored semiconducting carbon nanotube networks with enhanced thermoelectric properties. Nat. Energy 2016, 1, 16033.

18

Crispin, X. Thermoelectrics: Carbon nanotubes get high. Nat. Energy 2016, 1, 16037.

19

Ma, W. G.; Liu, Y. J.; Yan, S.; Miao, T. T.; Shi, S. Y.; Yang, M. C.; Zhang, X.; Gao, C. Systematic characterization of transport and thermoelectric properties of a macroscopic graphene fiber. Nano Res. 2016, 9, 3536-3546.

20

Liu, Y. J.; Xu, Z.; Zhan, J. M.; Li, P. G.; Gao, C. Superb electrically conductive graphene fibers via doping strategy. Adv. Mater. 2016, 28, 7941-7947.

21

Janas, D.; Herman, A. P.; Boncel, S.; Koziol, K. K. K. Iodine monochloride as a powerful enhancer of electrical conductivity of carbon nanotube wires. Carbon 2014, 73, 225-233.

22

Cruz-Silva, R.; Morelos-Gomez, A.; Kim, H. I.; Jang, H. K.; Tristan, F.; Vega-Diaz, S.; Rajukumar, L. P.; Elías, A. L.; Perea-Lopez, N.; Suhr, J. et al. Super-stretchable graphene oxide macroscopic fibers with outstanding knotability fabricated by dry film scrolling. ACS Nano 2014, 8, 5959-5967.

23

Xu, Z.; Liu, Y. J.; Zhao, X. L.; Peng, L.; Sun, H. Y.; Xu, Y.; Ren, X. B.; Jin, C. H.; Xu, P.; Wang, M. et al. Ultrastiff and strong graphene fibers via full-scale synergetic defect engineering. Adv. Mater. 2016, 28, 6449-6456.

24

Mansour, A. E.; Dey, S.; Amassian, A.; Tanielian, M. H. Bromination of graphene: A new route to making high performance transparent conducting electrodes with low optical losses. ACS Appl. Mater. Interfaces 2015, 7, 17692-17699.

25

Xu, Z.; Liu, Z.; Sun, H. Y.; Gao, C. Highly electrically conductive Ag-doped graphene fibers as stretchable conductors. Adv. Mater. 2013, 25, 3249-3253.

26

Aboutalebi, S. H.; Jalili, R.; Esrafilzadeh, D.; Salari, M.; Gholamvand, Z.; Yamini, S. A.; Konstantinov, K.; Shepherd, R. L.; Chen, J.; Moulton, S. E. et al. High-performance multifunctional graphene yarns: Toward wearable all-carbon energy storage textiles. ACS Nano 2014, 8, 2456-2466.

27

Poh, H. L.; Šimek, P.; Sofer, Z.; Pumera, M. Halogenation of graphene with chlorine, bromine, or iodine by exfoliation in a halogen atmosphere. Chem. Eur. J. 2013, 19, 2655-2662.

28

Xu, Z.; Zhang, Y.; Li, P. G.; Gao, C. Strong, conductive, lightweight, neat graphene aerogel fibers with aligned pores. ACS Nano 2012, 6, 7103-7113.

29

Klimenko, I. V.; Zhuravleva, T. S.; Geskin, V. M.; Jawhary, T. Study of the bromination of pitch-based carbon fibres. Mater. Chem. Phys. 1998, 56, 14-20.

30

Rao, A. M.; Eklund, P. C.; Bandow, S.; Thess, A.; Smalley, R. E. Evidence for charge transfer in doped carbon nanotube bundles from Raman scattering. Nature 1997, 388, 257-259.

31

Dresselhaus, M. S.; Dresselhaus, G. Intercalation compounds of graphite. Adv. Phys. 2002, 51, 1-186.

32

Zhao, W. J.; Tan, P. H.; Liu, J.; Ferrari, A. C. Intercalation of few-layer graphite flakes with FeCl3: Raman determination of Fermi level, layer by layer decoupling, and stability. J. Am. Chem. Soc. 2011, 133, 5941-5946.

33

Fujii, M.; Zhang, X.; Xie, H. Q.; Ago, H.; Takahashi, K.; Ikuta, T.; Abe, H.; Shimizu, T. Measuring the thermal conductivity of a single carbon nanotube. Phys. Rev. Lett. 2005, 95, 065502.

34

Miao, T. T.; Ma, W. G.; Zhang, X.; Wei, J. Q.; Sun, J. L. Significantly enhanced thermoelectric properties of ultralong double-walled carbon nanotube bundle. Appl. Phys. Lett. 2013, 102, 053105.

35

Shi, L.; Li, D. Y.; Yu, C.; Jang, W.; Kim, D.; Yao, Z.; Kim, P.; Majumdar, A. Measuring thermal and thermoelectric properties of one-dimensional nanostructures using a microfabricated device. J. Heat Transfer 2003, 125, 881-888.

36

Hone, J.; Llaguno, M. C.; Nemes, N. M.; Johnson, A. T.; Fischer, J. E.; Walters, D. A.; Casavant, M. J.; Schmidt, J.; Smalley, R. E. Electrical and thermal transport properties of magnetically aligned single wall carbon nanotube films. Appl. Phys. Lett. 2000, 77, 666-668.

37

Jin, R.; Zhou, Z. X.; Mandrus, D.; Ivanov, I. N.; Eres, G.; Howe, J. Y.; Puretzky, A. A.; Geohegan, D. B. The effect of annealing on the electrical and thermal transport properties of macroscopic bundles of long multi-wall carbon nanotubes. Physica B 2007, 388, 326-330.

38

Zhang, H. L.; Li, J. F.; Zhang, B. P.; Yao, K. F.; Liu, W. S.; Wang, H. Electrical and thermal properties of carbon nanotube bulk materials: Experimental studies for the 328-958 K temperature range. Phys. Rev. B 2007, 75, 205407.

39

Hewitt, C. A.; Kaiser, A. B.; Craps, M.; Czerw, R.; Carroll, D. L. Negative thermoelectric power from large diameter multiwalled carbon nanotubes grown at high chemical vapor deposition temperatures. J. Appl. Phys. 2013, 114, 083701.

40

Nonoguchi, Y.; Ohashi, K.; Kanazawa, R.; Ashiba, K.; Hata, K.; Nakagawa, T.; Adachi, C.; Tanase, T.; Kawai, T. Systematic conversion of single walled carbon nanotubes into n-type thermoelectric materials by molecular dopants. Sci. Rep. 2013, 3, 3344.

41

Hewitt, C. A.; Craps, M.; Czerw, R.; Carroll, D. L. The effects of high energy probe sonication on the thermoelectric power of large diameter multiwalled carbon nanotubes synthesized by chemical vapor deposition. Synth. Met. 2013, 184, 68-72.

42

Kim, S. L.; Choi, K.; Tazebay, A.; Yu, C. Flexible power fabrics made of carbon nanotubes for harvesting thermoelectricity. ACS Nano 2014, 8, 2377-2386.

43

Nakai, Y.; Honda, K.; Yanagi, K.; Kataura, H.; Kato, T.; Yamamoto, T.; Maniwa, Y. Giant Seebeck coefficient in semiconducting single-wall carbon nanotube film. Appl. Phys. Express 2014, 7, 025103.

44

Piao, M. X.; Joo, M. K.; Na, J.; Kim, Y. J.; Mouis, M.; Ghibaudo, G.; Roth, S.; Kim, W. Y.; Jang, H. K.; Kennedy, G. P. et al. Effect of intertube junctions on the thermoelectric power of monodispersed single walled carbon nanotube networks. J. Phys. Chem. C 2014, 118, 26454-26461.

45

Zhao, L. J.; Sun, X. J.; Lei, Z. Y.; Zhao, J. H.; Wu, J. R.; Li, Q.; Zhang, A. P. Thermoelectric behavior of aerogels based on graphene and multi-walled carbon nanotube nanocomposites. Compos. Part B 2015, 83, 317-322.

46

Hayashi, D.; Ueda, T.; Nakai, Y.; Kyakuno, H.; Miyata, Y.; Yamamoto, T.; Saito, T.; Hata, K.; Maniwa, Y. Thermoelectric properties of single-wall carbon nanotube films: Effects of diameter and wet environment. Appl. Phys. Express 2016, 9, 025102.

47

Miao, T. T.; Shi, S. Y.; Yan, S.; Ma, W. G.; Zhang, X.; Takahashi, K.; Ikuta, T. Integrative characterization of the thermoelectric performance of an individual multiwalled carbon nanotube. J. Appl. Phys. 2016, 120, 124302.

48

Wu, G. B.; Gao, C. Y.; Chen, G. M.; Wang, X.; Wang, H. F. High-performance organic thermoelectric modules based on flexible films of a novel n-type single-walled carbon nanotube. J. Mater. Chem. A 2016, 4, 14187-14193.

49

Seol, J. H.; Jo, I.; Moore, A. L.; Lindsay, L.; Aitken, Z. H.; Pettes, M. T.; Li, X. S.; Yao, Z.; Huang, R.; Broido, D. et al. Two-dimensional phonon transport in supported graphene. Science 2010, 328, 213-216.

50

Xiao, N.; Dong, X. C.; Song, L.; Liu, D. Y.; Tay, Y.; Wu, S. X.; Li, L. J.; Zhao, Y.; Yu, T.; Zhang, H. et al. Enhanced thermopower of graphene films with oxygen plasma treatment. ACS Nano 2011, 5, 2749-2755.

51

Sim, D.; Liu, D. Y.; Dong, X. C.; Xiao, N.; Li, S. A.; Zhao, Y.; Li, L. J.; Yan, Q. Y.; Hng, H. H. Power factor enhancement for few-layered graphene films by molecular attachments. J. Phys. Chem. C 2011, 115, 1780-1785.

52

Wang, Z. Q.; Xie, R. G.; Bui, C. T.; Liu, D.; Ni, X. X.; Li, B. W.; Thong, J. T. L. Thermal transport in suspended and supported few-layer graphene. Nano Lett. 2011, 11, 113-118.

53

Babichev, A. V.; Gasumyants, V. E.; Butko, V. Y. Resistivity and thermopower of graphene made by chemical vapor deposition technique. J. Appl. Phys. 2013, 113, 076101.

54

Guo, Y.; Mu, J. K.; Hou, C. Y.; Wang, H. Z.; Zhang, Q. H.; Li, Y. G. Flexible and thermostable thermoelectric devices based on large-area and porous all-graphene films. Carbon 2016, 107, 146-153.

55

Jang, W.; Chen, Z.; Bao, W. Z.; Lau, C. N.; Dames, C. Thickness-dependent thermal conductivity of encased graphene and ultrathin graphite. Nano Lett. 2010, 10, 3909-3913.

56

Nicklow, R.; Wakabayashi, N.; Smith, H. G. Lattice dynamics of pyrolytic graphite. Phys. Rev. B 1972, 5, 4951-4962.

57

Berber, S.; Kwon, Y. K.; Tománek, D. Unusually high thermal conductivity of carbon nanotubes. Phys. Rev. Lett. 2000, 84, 4613-4616.

58

Nika, D. L.; Pokatilov, E. P.; Askerov, A. S.; Balandin, A. A. Phonon thermal conduction in graphene: Role of umklapp and edge roughness scattering. Phys. Rev. B 2009, 79, 155413.

59

Klemens, P.G. Theory of the a-plane thermal conductivity of graphite. J. Wide Bandgap Mater. 2000, 7, 332-339.

60

Klemens, P.G. Theory of thermal conduction in thin ceramic films. Int. J. Thermophys. 2001, 22, 265-275.

61

Cai, W. W.; Moore, A. L.; Zhu, Y. W.; Li, X. S.; Chen, S. S.; Shi, L.; Ruoff, R. S. Thermal transport in suspended and supported monolayer graphene grown by chemical vapor deposition. Nano Lett. 2010, 10, 1645-1651.

62

Balandin, A. A. Thermal properties of graphene and nanostructured carbon materials. Nat. Mater. 2011, 10, 569-581.

63

Faugeras, C.; Faugeras, B.; Orlita, M.; Potemski, M.; Nair, R. R.; Geim, A. K. Thermal conductivity of graphene in corbino membrane geometry. ACS Nano 2010, 4, 1889-1892.

64

Fanchini, G.; Unalan, H. E.; Chhowalla, M. Modification of transparent and conducting single wall carbon nanotube thin films via bromine functionalization. Appl. Phys. Lett. 2007, 90, 092114.

65

Jung, N.; Kim, N.; Jockusch, S.; Turro, N. J.; Kim, P.; Brus, L. Charge transfer chemical doping of few layer graphenes: Charge distribution and band gap formation. Nano Lett. 2009, 9, 4133-4137.

66

Tongay, S.; Schumann, T.; Miao, X.; Appleton, B. R.; Hebard, A.F. Tuning Schottky diodes at the many-layer-graphene/semiconductor interface by doping. Carbon 2011, 49, 2033-2038.

67

Kittel, C. Introduction to Solid State Physics; Wiley: New York, 1976.

68

Banerjee, S.; Chakravorty, D. Electrical resistivity of copper-silica nanocomposites synthesized by electrodeposition. J. Appl. Phys. 1998, 84, 1149-1151.

69

Mott, N. F. Conduction in Non-Crystalline Materials; OxfordUniversity Press: New York, 1993.

70

Rousseau, B.; Estrade-Szwarckopf, H.; Thomann, A. L.; Brault, P. Stable C-atom displacements on HOPG surface under plasma low-energy argon-ion bombardment. Appl. Phys. A 2003, 77, 591-597.

71

Barnard, R. D. Thermoelectricity in Metals and Alloys; Wiley: New York, 1972.

72

Redfern, P. C.; Gruen, D.; Curtiss, L. A. Effect of boron substitution on the electronic structure of nanographene and its relevance to the thermoelectric transport properties in nanocarbon ensembles. Chem. Phys. Lett. 2009, 471, 264-268.

73

Wu, X. S.; Hu, Y. K.; Ruan, M.; Madiomanana, N. K.; Berger, C.; de Heer, W. A. Thermoelectric effect in high mobility single layer epitaxial graphene. Appl. Phys. Lett. 2011, 99, 133102.

74

Hewitt, C. A.; Kaiser, A. B.; Craps, M.; Czerw, R.; Roth, S.; Carroll, D. L. Temperature dependent thermoelectric properties of freestanding few layer graphene/polyvinylidene fluoride composite thin films. Synth. Met. 2013, 165, 56-59.

Publication history
Copyright
Acknowledgements

Publication history

Received: 21 February 2017
Revised: 08 May 2017
Accepted: 16 May 2017
Published: 19 August 2017
Issue date: February 2018

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany 2017

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 51576105, 51406236 51327001, 51336009, 21325417, and 51533008), National Key R & D Program of China (No. 2016YFA0200200), the Science Fund for Creative Research Groups (No. 51621062), Tsinghua University Initiative Scientific Research Program, and the National Postdoctoral Program for Innovative Talents (No. BX201700209).

Return