Journal Home > Volume 11 , Issue 2

Phosphorene has attracted much attention recently as an alternative channel material in nanoscale electronic and optoelectronic devices due to its high carrier mobility and tunable direct bandgap. Compared with monolayer (ML) phosphorene, few-layer (FL) phosphorene is easier to prepare, is more stable in experiments, and is expected to form a smaller Schottky barrier height (SBH) at the phosphorene-metal interface. Using ab initio electronic structure calculations and quantum transport simulations, we perform a systematic study of the interfacial properties of three-layer (3L) phosphorene field effect transistors (FETs) contacted with several common metals (Al, Ag, Au, Cu, Ti, Cr, Ni, and Pd) for the first time. The SBHs obtained in the vertical direction from projecting the band structures of the 3L phosphorene-metal systems to the left bilayer (2L) phosphorenes are comparable with those obtained in the lateral direction from the quantum transport simulations for 2L phosphorene FETs. The quantum transport simulations for the 3L phosphorene FETs show that 3L phosphorene forms n-type Schottky contacts with electron SBHs of 0.16 and 0.28 eV in the lateral direction, when Ag and Cu are used as electrodes, respectively, and p-type Schottky contacts with hole SBHs of 0.05, 0.11, 0.20, 0.30, 0.30, and 0.31 eV in the lateral direction when Cr, Pd, Ni, Ti, Al, and Au are used as electrodes, respectively. The calculated polarity and SBHs of the 3L phosphorene FETs are generally in agreement with the available experiments.


menu
Abstract
Full text
Outline
About this article

Three-layer phosphorene-metal interfaces

Show Author's information Xiuying Zhang1,§Yuanyuan Pan1,§Meng Ye1Ruge Quhe2Yangyang Wang1,3Ying Guo4Han Zhang1Yang Dan1Zhigang Song1Jingzhen Li1Jinbo Yang1,5Wanlin Guo6Jing Lu1,5( )
State Key Laboratory for Mesoscopic Physics and Department of PhysicsPeking UniversityBeijing100871China
State Key Laboratory of Information Photonics and Optical Communications and School of ScienceBeijing University of Posts and TelecommunicationsBeijing100876China
Nanophotonics and Optoelectronics Research CenterQian Xuesen Laboratory of Space TechnologyChina Academy of Space TechnologyBeijing100094China
School of Physics and Telecommunication EngineeringShaanxi Sci-Tech UniversityHanzhong723001China
Collaborative Innovation Center of Quantum MatterBeijing100871China
Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of EducationNanjing University of Aeronautics and AstronauticsNanjing210016China

§ Xiuying Zhang and Yuanyuan Pan contributed equally to this work.

Abstract

Phosphorene has attracted much attention recently as an alternative channel material in nanoscale electronic and optoelectronic devices due to its high carrier mobility and tunable direct bandgap. Compared with monolayer (ML) phosphorene, few-layer (FL) phosphorene is easier to prepare, is more stable in experiments, and is expected to form a smaller Schottky barrier height (SBH) at the phosphorene-metal interface. Using ab initio electronic structure calculations and quantum transport simulations, we perform a systematic study of the interfacial properties of three-layer (3L) phosphorene field effect transistors (FETs) contacted with several common metals (Al, Ag, Au, Cu, Ti, Cr, Ni, and Pd) for the first time. The SBHs obtained in the vertical direction from projecting the band structures of the 3L phosphorene-metal systems to the left bilayer (2L) phosphorenes are comparable with those obtained in the lateral direction from the quantum transport simulations for 2L phosphorene FETs. The quantum transport simulations for the 3L phosphorene FETs show that 3L phosphorene forms n-type Schottky contacts with electron SBHs of 0.16 and 0.28 eV in the lateral direction, when Ag and Cu are used as electrodes, respectively, and p-type Schottky contacts with hole SBHs of 0.05, 0.11, 0.20, 0.30, 0.30, and 0.31 eV in the lateral direction when Cr, Pd, Ni, Ti, Al, and Au are used as electrodes, respectively. The calculated polarity and SBHs of the 3L phosphorene FETs are generally in agreement with the available experiments.

Keywords: density functional theory, Schottky barrier height, three-layer phosphorene, interfacial properties, quantum transport simulation

References(65)

1

Li, L. K.; Yu, Y. J.; Ye, G. J.; Ge, Q. Q.; Ou, X. D.; Wu, H.; Feng, D. L.; Chen, X. H.; Zhang, Y. B. Black phosphorus field-effect transistors. Nat. Nanotechnol. 2014, 9, 372-377.

2

Das, S.; Zhang, W.; Demarteau, M.; Hoffmann, A.; Dubey, M.; Roelofs, A. Tunable transport gap in phosphorene. Nano Lett. 2014, 14, 5733-5739.

3

Liu, H.; Neal, A. T.; Zhu, Z.; Luo, Z.; Xu, X. F.; Tománek, D.; Ye, P. D. Phosphorene: An unexplored 2D semiconductor with a high hole mobility. ACS Nano 2014, 8, 4033-4041.

4

Das, S.; Demarteau, M.; Roelofs, A. Ambipolar phosphorene field effect transistor. ACS Nano 2014, 8, 11730-11738.

5

Reich, E. S. Phosphorene excites materials scientists. Nature 2014, 506, 19.

6

Buscema, M.; Groenendijk, D. J.; Blanter, S. I.; Steele, G. A.; van der Zant, H. S. J.; Castellanos-Gomez, A. Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors. Nano Lett. 2014, 14, 3347-3352.

7

Zhang, S.; Yang, J.; Xu, R. J.; Wang, F.; Li, W. F.; Ghufran, M.; Zhang, Y. W.; Yu, Z. F.; Zhang, G.; Qin, Q. H. et al. Extraordinary photoluminescence and strong temperature/angle-dependent Raman responses in few-layer phosphorene. ACS Nano 2014, 8, 9590-9596.

8

Churchill, H. O.; Jarillo-Herrero, P. Two-dimensional crystals: Phosphorus joins the family. Nat. Nanotechnol. 2014, 9, 330-331.

9

Koenig, S. P.; Doganov, R. A.; Schmidt, H.; Castro Neto, A. H.; Özyilmaz, B. Electric field effect in ultrathin black phosphorus. Appl. Phys. Lett. 2014, 104, 103106.

10

Wan, R. L.; Cao, X.; Guo, J. Simulation of phosphorene Schottky-barrier transistors. Appl. Phys. Lett. 2014, 105, 163511.

11

Allain, A.; Kang, J. H.; Banerjee, K.; Kis, A. Electrical contacts to two-dimensional semiconductors. Nat. Mater. 2015, 14, 1195-1205.

12

Liu, H.; Du, Y. C.; Deng, Y. X.; Ye, P. D. Semiconducting black phosphorus: Synthesis, transport properties and electronic applications. Chem. Soc. Rev. 2015, 44, 2732-2743.

13

Kang, J. H.; Liu, W.; Sarkar, D.; Jena, D.; Banerjee, K. Computational study of metal contacts to monolayer transition-metal dichalcogenide semiconductors. Phys. Rev. X 2014, 4, 031005.

14

Pan, Y. Y.; Wang, Y. Y.; Ye, M.; Quhe, R. G.; Zhong, H. X.; Song, Z. G.; Peng, X. Y.; Yu, D. P.; Yang, J. B.; Shi, J. J. et al. Monolayer phosphorene-metal contacts. Chem. Mater. 2016, 28, 2100-2109.

15

Zhong, H. X.; Quhe, R. G.; Wang, Y. Y.; Ni, Z. Y.; Ye, M.; Song, Z. G.; Pan, Y. Y.; Yang, J. B.; Yang, L.; Lei, M. et al. Interfacial properties of monolayer and bilayer MoS2 contacts with metals: Beyond the energy band calculations. Sci. Rep. 2016, 6, 21786.

16

Wang, Y. Y.; Yang, R. X.; Quhe, R. G.; Zhong, H. X.; Cong, L. X.; Ye, M.; Ni, Z. Y.; Song, Z. G.; Yang, J. B.; Shi, J. J. et al. Does p-type ohmic contact exist in WSe2-metal interfaces? Nanoscale 2016, 8, 1179-1191.

17

Du, Y. C.; Liu, H.; Deng, Y. X.; Ye, P. D. Device perspective for black phosphorus field-effect transistors: Contact resistance, ambipolar behavior, and scaling. ACS Nano 2014, 8, 10035-10042.

18

Perello, D. J.; Chae, S. H.; Song, S.; Lee, Y. H. High-performance n-type black phosphorus transistors with type control via thickness and contact-metal engineering. Nat. Commun. 2015, 6, 7809.

19

Wang, H.; Wang, X. M.; Xia, F. N.; Wang, L. H.; Jiang, H.; Xia, Q. F.; Chin, M. L.; Dubey, M.; Han, S. J. Black phosphorus radio-frequency transistors. Nano Lett. 2014, 14, 6424-6429.

20

Wan, B. S.; Yang, B. C.; Wang, Y.; Zhang, J. Y.; Zeng, Z. M.; Liu, Z. Y.; Wang, W. H. Enhanced stability of black phosphorus field-effect transistors with SiO2 passivation. Nanotechnol. 2015, 26, 435702.

21

Li, X. F.; Du, Y. C.; Si, M. W.; Yang, L. M.; Li, S. C.; Li, T. Y.; Xiong, X.; Ye, P. D.; Wu, Y. Q. Mechanisms of current fluctuation in ambipolar black phosphorus field-effect transistors. Nanoscale 2016, 8, 3572-3578.

22

Buscema, M.; Groenendijk, D. J.; Steele, G. A.; van der Zant, H. S.; Castellanos-Gomez, A. Photovoltaic effect in few-layer black phosphorus PN junctions defined by local electrostatic gating. Nat. Commun. 2014, 5, 4651.

23

Xia, F. N.; Wang, H.; Jia, Y. C. Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nat. Commun. 2014, 5, 4458.

24

Liu, H.; Neal, A. T.; Si, M. W.; Du, Y. C.; Ye, P. D. The effect of dielectric capping on few-layer phosphorene transistors: Tuning the Schottky barrier heights. IEEE Electr. Device Lett. 2014, 35, 795-797.

25

Xu, R. J.; Yang, J.; Zhu, Y.; Yan, H.; Pei, J. J.; Myint, Y. W.; Zhang, S.; Lu, Y. R. Layer-dependent surface potential of phosphorene and anisotropic/layer-dependent charge transfer in phosphorene-gold hybrid systems. Nanoscale 2015, 8, 129-135.

26

Gong, K.; Zhang, L.; Ji, W.; Guo, H. Electrical contacts to monolayer black phosphorus: A first-principles investigation. Phys. Rev. B 2014, 90, 125441.

27

Zhu, S. C.; Ni, Y.; Liu, J.; Yao, K. L. The study of interaction and charge transfer at black phosphorus-metal interfaces. J. Phys. D Appl. Phys. 2015, 48, 445101.

28

Pan, Y. Y.; Dan, Y.; Wang, Y. Y.; Ye, M.; Zhang, H.; Quhe, R. G.; Zhang, X. Y.; Li, J. Z.; Guo, W. L.; Yang, L. et al. Schottky barriers in bilayer phosphorene transistors. ACS Appl. Mater. Interfaces 2017, 9, 12694-12705.

29

Koenig, S. P.; Doganov, R. A.; Seixas, L.; Carvalho, A.; Tan, J. Y.; Watanabe, K.; Taniguchi, T.; Yakovlev, N.; Neto, A. H. C.; Ozyilmaz, B. Electron doping of ultrathin black phosphorus with Cu adatoms. Nano Lett. 2016, 16, 2145-2151.

30

Yuan, Y. K.; Quhe, R. G.; Zheng, J. X.; Wang, Y. Y.; Ni, Z. Y.; Shi, J. J.; Lu, J. Strong band hybridization between silicene and Ag(111) substrate. Physica E 2014, 58, 38-42.

31

Cheng, D. J.; Barcaro, G.; Charlier, J. C.; Hou, M.; Fortunelli, A. Homogeneous nucleation of graphitic nanostructures from carbon chains on Ni(111). J. Phy. Chem. C 2011, 115, 10537-10543.

32

So, C.; Zhang, H.; Wang, Y.; Ye, M.; Pan, Y.; Quhe, R.; Li, J. Z.; Zhang, X.; Zhou, Y.; Lu, J. A computational study of monolayer hexagonal WTe2 to metal interfaces. Phys. Status Solidi B 2017, in press, DOI: 10.1002/pssb.201600837.

33

Qiao, J. S.; Kong, X. H.; Hu, Z. X.; Yang, F.; Ji, W. High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nat. Commun. 2014, 5, 4475.

34

Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758-1775.

35

Monkhorst, H. J.; Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188-5192.

36

Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 1993, 47, 558-561.

37

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169-11186.

38

Klimeš, J.; Bowler, D. R.; Michaelides, A. Chemical accuracy for the van der Waals density functional. J. Phys. 2010, 22, 022201.

39

Segall, M. D.; Lindan, P. J. D.; Probert, M. J.; Pickard, C. J.; Hasnip, P. J.; Clark, S. J.; Payne, M. C. First-principles simulation: Ideas, illustrations and the CASTEP code. J. Phys. 2002, 14, 2717-2744.

40

Taylor, J.; Guo, H.; Wang, J. Ab initio modeling of quantum transport properties of molecular electronic devices. Phys. Rev. B 2001, 63, 245407.

41

Brandbyge, M.; Mozos, J. L.; Ordejón, P.; Taylor, J.; Stokbro, K. Density-functional method for nonequilibrium electron transport. Phys. Rev. B 2002, 65, 165401.

42

Çakır, D.; Peeters, F. M. Dependence of the electronic and transport properties of metal-MoSe2 interfaces on contact structures. Phys. Rev. B 2014, 89, 245403.

43

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865-3868.

44

Wang, Y. Y.; Huang, P.; Ye, M.; Quhe, R. G.; Pan, Y. Y.; Zhang, H.; Zhong, H. X.; Shi, J. J.; Lu, J. Many-body effect, carrier mobility, and device performance of hexagonal arsenene and antimonene. Chem. Mater. 2017, 29, 2191-2201.

45

Guo, Y.; Pan, F.; Ye, M.; Wang, Y. Y.; Pan, Y. Y.; Zhang, X. Y.; Li, J. Z.; Zhang, H.; Lu, J. Interfacial properties of stanene-metal contacts. 2D Mater. 2016, 3, 035020.

46

Zhong, H. X.; Quhe, R. G.; Wang, Y. Y.; Shi, J. J.; Lü, J. Silicene on substrates: A theoretical perspective. Chin. Phys. B 2015, 24, 087308.

47

Zhao, J. J.; Liu, H. S.; Yu, Z. M.; Quhe, R. G.; Zhou, S.; Wang, Y. Y.; Liu, C. C.; Zhong, H. X.; Han, N. N.; Lu, J. et al. Rise of silicene: A competitive 2D material. Prog. Mater. Sci. 2016, 83, 24-151.

48

Quhe, R. G.; Yuan, Y. K.; Zheng, J. X.; Wang, Y. Y.; Ni, Z. Y.; Shi, J. J.; Yu, D. P.; Yang, J. B.; Lu, J. Does the Dirac cone exist in silicene on metal substrates? Sci. Rep. 2014, 4, 5476.

49

Kang, J. H.; Liu, W.; Banerjee, K. High-performance MoS2 transistors with low-resistance molybdenum contacts. Appl. Phys. Lett. 2014, 104, 093106.

50

Ni, Z. Y.; Ye, M.; Ma, J. H.; Wang, Y. Y.; Quhe, R. G.; Zheng, J. X.; Dai, L.; Yu, D. P.; Shi, J. J.; Yang, J. B. et al. Performance upper limit of sub-10 nm monolayer MoS2 transistors. Adv. Electron. Mater. 2016, 2, 1600191.

51

Pan, Y. Y.; Wang, Y. Y.; Wang, L.; Zhong, H. X.; Quhe, R. G.; Ni, Z. Y.; Ye, M.; Mei, W. N.; Shi, J. J.; Guo, W. L. et al. Graphdiyne-metal contacts and graphdiyne transistors. Nanoscale 2015, 7, 2116-2127.

52

Pan, Y. Y.; Li, S. B.; Ye, M.; Quhe, R. G.; Song, Z. G.; Wang, Y. Y.; Zheng, J. X.; Pan, F.; Guo, W. L.; Yang, J. B. et al. Interfacial properties of monolayer MoSe2-metal contacts. J. Phys. Chem. C 2016, 120, 13063-13070.

53

Pyykkö, P.; Atsumi, M. Molecular single-bond covalent radii for elements 1-118. Chem. Eur. J. 2008, 15, 186-197.

54

Van Hoof, C.; Deneffe, K.; De Boeck, J.; Arent, D. J.; Borghs, G. Franz-Keldysh oscillations originating from a well-controlled electric field in the GaAs depletion region. Appl. Phys. Lett. 1989, 54, 608-610.

55

Shen, H.; Dutta, M.; Fotiadis, L.; Newman, P. G.; Moerkirk, R. P.; Chang, W. H.; Sacks, R. N. Photoreflectance study of surface Fermi level in GaAs and GaAlAs. Appl. Phys. Lett. 1990, 57, 2118-2120.

56

Hwang, J. S.; Chang, C. C.; Chen, M. F.; Chen, C. C.; Lin, K. I.; Tang, F. C.; Hong, M.; Kwo, J. Schottky barrier height and interfacial state density on oxide-GaAs interface. J. Appl. Phys. 2003, 94, 348-353.

57

Cho, S.; Kim, S.; Kim, J. H.; Zhao, J.; Seok, J.; Keum, D. H.; Baik, J.; Choe, D. H.; Chang, K. J.; Suenaga, K. et al. Phase patterning for ohmic homojunction contact in MoTe2. Science 2015, 349, 625-628.

58

Kim, A. R.; Kim, Y.; Nam, J.; Chung, H. S.; Kim, D. J.; Kwon, J. D.; Park, S. W.; Park, J.; Choi, S. Y.; Lee, B. H. et al. Alloyed 2D metal-semiconductor atomic layer junctions. Nano Lett. 2016, 16, 1890-1895.

59

Kappera, R.; Voiry, D.; Yalcin, S. E.; Branch, B.; Gupta, G.; Mohite, A. D.; Chhowalla, M. Phase-engineered low-resistance contacts for ultrathin MoS2 transistors. Nat. Mater. 2014, 13, 1128-1134.

60

Liu, Y. Y.; Stradins, P.; Wei, S. H. Van der Waals metal-semiconductor junction: Weak Fermi level pinning enables effective tuning of Schottky barrier. Sci. Adv. 2016, 2, e1600069.

61

Padilha, J. E.; Fazzio, A.; da Silva, A. J. R. Van der Waals heterostructure of phosphorene and graphene: Tuning the Schottky barrier and doping by electrostatic gating. Phys. Rev. Lett. 2015, 114, 066803.

62

Avsar, A.; Vera-Marun, I. J.; Tan, J. Y.; Watanabe, K.; Taniguchi, T.; Neto, A. H. C.; Özyilmaz, B. Air-stable transport in graphene-contacted, fully encapsulated ultrathin black phosphorus-based field-effect transistors. ACS Nano 2015, 9, 4138-4145.

63

Hu, W.; Wang, T.; Yang, J. L. Tunable Schottky contacts in hybrid graphene-phosphorene nanocomposites. J. Mater. Chem. C 2015, 3, 4756-4761.

64

Liu, Y. Y.; Xiao, H.; Goddard Ⅲ, W. A. Schottky-barrier-free contacts with two-dimensional semiconductors by surface-engineered MXenes. J. Am. Chem. Soc. 2016, 138, 15853-15856.

65

Quhe, R. G.; Peng, X. Y.; Pan, Y. Y.; Ye, M.; Wang, Y. Y.; Zhang, H.; Feng, S. Y.; Zhang, Q. X.; Shi, J. J.; Yang, J. B. et al. Can a black phosphorus Schottky barrier transistor be good enough? ACS Appl. Mater. Interfaces 2017, 9, 3959-3966.

Publication history
Copyright
Acknowledgements

Publication history

Received: 08 January 2017
Revised: 10 May 2017
Accepted: 16 May 2017
Published: 19 July 2017
Issue date: February 2018

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany 2017

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NSFC) (Nos. 11274016, 11474012, 11674005 and 11274233), the National Basic Research Program of China (973 Program) (Nos. 2013CB932604 and 2012CB619304), the Ministry of Science and Technology of China (Nos. 2016YFB0700600 and 2016YFA0301300), and open Fund of Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education of China (No. INMD-2016M03).

Return