Journal Home > Volume 10 , Issue 12

Sodium-ion batteries have received remarkable attention as next-generation high-performance electrochemical energy storage devices because of their cost effectiveness and the broad geographical distribution of sodium. As a critical component of sodium-ion batteries, anode materials, especially nanostructured anodes, have a significant effect on the electrochemical performance of sodium-ion batteries. Recent research indicates that phosphorus and metal phosphides show great promise as anode candidates for sodium-ion batteries because of their low cost and relatively high theoretical gravimetric and volumetric specific capacities. In this review, we systematically summarize recent research progress on state-of-the-art nanostructured phosphorus and phosphides, including the synthetic strategies, Na-storage mechanisms, and the relationship between the nanostructure and electrochemical performance. Moreover, we present an overview of future challenges and opportunities based on current developments.


menu
Abstract
Full text
Outline
About this article

Phosphorus and phosphide nanomaterials for sodium-ion batteries

Show Author's information Qingbing Xia1,2Weijie Li2Zongcheng Miao1( )Shulei Chou2( )Huakun Liu2
Key Laboratory of Organic Polymer Photoelectric MaterialsSchool of ScienceXijing UniversityXi'an710123China
Institute for Superconducting and Electronic MaterialsAustralian Institute of Innovative MaterialsUniversity of WollongongNorth WollongongNSW2500Australia

Abstract

Sodium-ion batteries have received remarkable attention as next-generation high-performance electrochemical energy storage devices because of their cost effectiveness and the broad geographical distribution of sodium. As a critical component of sodium-ion batteries, anode materials, especially nanostructured anodes, have a significant effect on the electrochemical performance of sodium-ion batteries. Recent research indicates that phosphorus and metal phosphides show great promise as anode candidates for sodium-ion batteries because of their low cost and relatively high theoretical gravimetric and volumetric specific capacities. In this review, we systematically summarize recent research progress on state-of-the-art nanostructured phosphorus and phosphides, including the synthetic strategies, Na-storage mechanisms, and the relationship between the nanostructure and electrochemical performance. Moreover, we present an overview of future challenges and opportunities based on current developments.

Keywords: sodium-ion batteries, nanostructure, anodes, phosphides, phosphorus

References(124)

1

Bruce, P. G.; Freunberger, S. A.; Hardwick, L. J.; Tarascon, J. M. Li-O2 and Li-S batteries with high energy storage. Nat. Mater. 2012, 11, 19-29.

2

Armand, M.; Tarascon, J. M. Building better batteries. Nature 2008, 451, 652-657.

3

Palacín, M. R.; de Guibert, A. Why do batteries fail? Science 2016, 351, 1253292.

4

Dunn, B.; Kamath, H.; Tarascon, J. M. Electrical energy storage for the grid: A battery of choices. Science 2011, 334, 928-935.

5

Armstrong, M. J.; O'Dwyer, C.; Macklin, W. J.; Holmes, J. D. Evaluating the performance of nanostructured materials as lithium-ion battery electrodes. Nano Res. 2014, 7, 1-62.

6

Balogun, M. S.; Qiu, W. T.; Luo, Y.; Meng, H.; Mai, W. J.; Onasanya, A.; Olaniyi, T. K.; Tong, Y. X. A review of the development of full cell lithium-ion batteries: The impact of nanostructured anode materials. Nano Res. 2016, 9, 2823-2851.

7

Guo, X.; Sun, B.; Su, D. W.; Liu, X. X.; Liu, H.; Wang, Y.; Wang, G. X. Recent developments of aprotic lithium-oxygen batteries: Functional materials determine the electrochemical performance. Sci. Bull. 2017, 62, 442-452.

8

Yaksic, A.; Tilton, J. E. Using the cumulative availability curve to assess the threat of mineral depletion: The case of lithium. Resour. Policy 2009, 34, 185-194.

9

Kim, Y.; Ha, K. H.; Oh, S. M.; Lee, K. T. High-capacity anode materials for sodium-ion batteries. Chemistry 2014, 20, 11980-11992.

10

Yabuuchi, N.; Kubota, K.; Dahbi, M.; Komaba, S. Research development on sodium-ion batteries. Chem. Rev. 2014, 114, 11636-11682.

11

Kubota, K.; Komaba, S. Review-practical issues and future perspective for Na-ion batteries. J. Electrochem. Soc. 2015, 162, A2538-A2550.

12

Kundu, D.; Talaie, E.; Duffort, V.; Nazar, L. F. The emerging chemistry of sodium ion batteries for electrochemical energy storage. Angew. Chem. Int. Ed. 2015, 54, 3431-3448.

13

Dahbi, M.; Yabuuchi, N.; Kubota, K.; Tokiwa, K.; Komaba, S. Negative electrodes for Na-ion batteries. Phys. Chem. Chem. Phys. 2014, 16, 15007-15028.

14

Wang, L. P.; Yu, L. H.; Wang, X.; Srinivasan, M.; Xu, Z. J. Recent developments in electrode materials for sodium-ion batteries. J. Mater. Chem. A2015, 3, 9353-9378.

15

Xiang, X. D.; Zhang, K.; Chen, J. Recent advances and prospects of cathode materials for sodium-ion batteries. Adv. Mater. 2015, 27, 5343-5364.

16

Fang, C.; Huang, Y. H.; Zhang, W. X.; Han, J. T.; Deng, Z.; Cao, Y. L.; Yang, H. X. Routes to high energy cathodes of sodium-ion batteries. Adv. Energy Mater. 2016, 6, 1501727.

17

Kim, H.; Kim, H.; Ding, Z.; Lee, M. H.; Lim, K.; Yoon, G.; Kang, K. Recent progress in electrode materials for sodium-ion batteries. Adv. Energy Mater. 2016, 6, 1600943.

18

Luo, W.; Shen, F.; Bommier, C.; Zhu, H. L.; Ji, X. L.; Hu, L. B. Na-ion battery anodes: Materials and electrochemistry. Acc. Chem. Res. 2016, 49, 231-240.

19

Xiao, Y.; Lee, S. H.; Sun, Y. K. The application of metal sulfides in sodium ion batteries. Adv. Energy Mater. 2016, 7, 1601329.

20

Ponrouch, A.; Marchante, E.; Courty, M.; Tarascon, J. M.; Palacín, M. R. In search of an optimized electrolyte for Na-ion batteries. Energy Environ. Sci. 2012, 5, 8572-8583.

21

Cao, Y. L.; Xiao, L. F.; Sushko, M. L.; Wang, W.; Schwenzer, B.; Xiao, J.; Nie, Z. M.; Saraf, L. V.; Yang, Z. G.; Liu, J. Sodium ion insertion in hollow carbon nanowires for battery applications. Nano Lett. 2012, 12, 3783-3787.

22

Zhang, N.; Liu, Y. C.; Lu, Y. Y.; Han, X. P.; Cheng, F. Y.; Chen, J. Spherical nano-Sb@C composite as a high-rate and ultra-stable anode material for sodium-ion batteries. Nano Res. 2015, 8, 3384-3393.

23

Liu, Z. M.; Yu, X. Y.; Lou, X. W.; Paik, U. Sb@C coaxial nanotubes as a superior long-life and high-rate anode for sodium ion batteries. Energy Environ. Sci. 2016, 9, 2314-2318.

24

Liu, S.; Feng, J. K.; Bian, X. F.; Liu, J.; Xu, H. The morphology-controlled synthesis of a nanoporous-antimony anode for high-performance sodium-ion batteries. Energy Environ. Sci. 2016, 9, 1229-1236.

25

Li, Z.; Ding, J.; Mitlin, D. Tin and tin compounds for sodium ion battery anodes: Phase transformations and performance. Acc. Chem. Res. 2015, 48, 1657-1665.

26

He, M.; Walter, M.; Kravchyk, K. V.; Erni, R.; Widmer, R.; Kovalenko, M. V. Monodisperse SnSb nanocrystals for Li-ion and Na-ion battery anodes: Synergy and dissonance between Sn and Sb. Nanoscale 2015, 7, 455-459.

27

Liu, J.; Yang, Z. Z.; Wang, J. Q.; Gu, L.; Maier, J.; Yu, Y. Three-dimensionally interconnected nickel-antimony intermetallic hollow nanospheres as anode material for high-rate sodium-ion batteries. Nano Energy 2015, 16, 389-398.

28

Lee, C. W.; Kim, J. C.; Park, S.; Song, H. J.; Kim, D. W. Highly stable sodium storage in 3-D gradational Sb-NiSb-Ni heterostructures. Nano Energy 2015, 15, 479-489.

29

Hou, H. S.; Cao, X. Y.; Yang, Y. C.; Fang, L. B.; Pan, C. C.; Yang, X. M.; Song, W. X.; Ji, X. B. NiSb alloy hollow nanospheres as anode materials for rechargeable lithium ion batteries. Chem. Commun. 2014, 50, 8201-8203.

30

Dou, Y. H.; Wang, Y. X.; Tian, D. L.; Xu, J. T.; Zhang, Z. J.; Liu, Q. N.; Ruan, B. Y.; Ma, J. M.; Sun, Z. Q.; Dou, S. X. Atomically thin Co3O4 nanosheet-coated stainless steel mesh with enhanced capacitive Na+ storage for high-performance sodium-ion batteries. 2D Mater. 2017, 4, 015022.

31

Yuan, S.; Huang, X. L.; Ma, D. L.; Wang, H. G.; Meng, F. Z.; Zhang, X. B. Engraving copper foil to give large-scale binder-free porous CuO arrays for a high-performance sodium-ion battery anode. Adv. Mater. 2014, 26, 2273-2279.

32

Wang, L.; Bi, X. F.; Yang, S. B. Partially single-crystalline mesoporous Nb2O5 nanosheets in between graphene for ultrafast sodium storage. Adv. Mater. 2016, 28, 7672-7679.

33

Zhang, K.; Park, M.; Zhou, L. M.; Lee, G. H.; Shin, J.; Hu, Z.; Chou, S. L.; Chen, J.; Kang, Y. M. Cobalt-doped FeS2 nanospheres with complete solid solubility as a high-performance anode material for sodium-ion batteries. Angew. Chem. Int. Ed. Engl. 2016, 55, 12822-12826.

34

Song, X. S.; Li, X. F.; Bai, Z. M.; Yan, B.; Li, D. J.; Sun, X. L. Morphology-dependent performance of nanostructured Ni3S2/Ni anode electrodes for high performance sodium ion batteries. Nano Energy 2016, 26, 533-540.

35

Yu, D. Y. W.; Prikhodchenko, P. V.; Mason, C. W.; Batabyal, S. K.; Gun, J.; Sladkevich, S.; Medvedev, A. G.; Lev, O. High-capacity antimony sulphide nanoparticle-decorated graphene composite as anode for sodium-ion batteries. Nat. Commun. 2013, 4, 2922.

36

Qian, J. F.; Wu, X. Y.; Cao, Y. L.; Ai, X. P.; Yang, H. X. High capacity and rate capability of amorphous phosphorus for sodium ion batteries. Angew. Chem. Int. Ed. Engl. 2013, 52, 4633-4636.

37

Kim, Y.; Park, Y.; Choi, A.; Choi, N. S.; Kim, J.; Lee, J.; Ryu, J. H.; Oh, S. M.; Lee, K. T. An amorphous red phosphorus/carbon composite as a promising anode material for sodium ion batteries. Adv. Mater. 2013, 25, 3045-3049.

38

Qian, J. F.; Xiong, Y.; Cao, Y. L.; Ai, X. P.; Yang, H. X. Synergistic Na-storage reactions in Sn4P3 as a high-capacity, cycle-stable anode of Na-ion batteries. Nano Lett. 2014, 14, 1865-1869.

39

Li, W. J.; Chou, S. L.; Wang, J. Z.; Kim, J. H.; Liu, H. K.; Dou, S. X. Sn4+xP3@Amorphous Sn-P composites as anodes for sodium-ion batteries with low cost, high capacity, long life, and superior rate capability. Adv. Mater. 2014, 26, 4037-4042.

40

Kim, Y.; Kim, Y.; Choi, A.; Woo, S.; Mok, D.; Choi, N. S.; Jung, Y. S.; Ryu, J. H.; Oh, S. M.; Lee, K. T. Tin phosphide as a promising anode material for Na-ion batteries. Adv. Mater. 2014, 26, 4139-4144.

41

Park, C. M.; Sohn, H. J. Black phosphorus and its composite for lithium rechargeable batteries. Adv. Mater. 2007, 19, 2465-2468.

42

Wang, L.; He, X. M.; Li, J. J.; Sun, W. T.; Gao, J.; Guo, J. W.; Jiang, C. Y. Nano-structured phosphorus composite as high-capacity anode materials for lithium batteries. Angew. Chem. Int. Ed. Engl. 2012, 51, 9034-9037.

43

Qian, J. F.; Qiao, D.; Ai, X. P.; Cao, Y. L.; Yang, H. X. Reversible 3-Li storage reactions of amorphous phosphorus as high capacity and cycling-stable anodes for Li-ion batteries. Chem. Commun. 2012, 48, 8931-8933.

44

Sun, J.; Lee, H. W.; Pasta, M.; Yuan, H. T.; Zheng, G. Y.; Sun, Y. M.; Li, Y. Z.; Cui, Y. A phosphorene-graphene hybrid material as a high-capacity anode for sodium-ion batteries. Nat. Nanotechnol. 2015, 10, 980-985.

45

Li, W. J.; Chou, S. L.; Wang, J. Z.; Liu, H. K.; Dou, S. X. A new, cheap, and productive FeP anode material for sodium-ion batteries. Chem. Commun. 2015, 51, 3682-3685.

46

Yang, Q. R.; Li, W. J.; Chou, S. L.; Wang, J. Z.; Liu, H. K. Ball-milled FeP/graphite as a low-cost anode material for the sodium-ion battery. RSC Adv. 2015, 5, 80536-80541.

47

Li, W. J.; Yang, Q. R.; Chou, S. L.; Wang, J. Z.; Liu, H. K. Cobalt phosphide as a new anode material for sodium storage. J. Power Sources 2015, 294, 627-632.

48

Lu, J.; Chen, Z. H.; Ma, Z. F.; Pan, F.; Curtiss, L. A.; Amine, K. The role of nanotechnology in the development of battery materials for electric vehicles. Nat. Nanotechnol. 2016, 11, 1031-1038.

49

Zhao, Y.; Li, X. F.; Yan, B.; Xiong, D. B.; Li, D. J.; Lawes, S.; Sun, X. L. Recent developments and understanding of novel mixed transition-metal oxides as anodes in lithium ion batteries. Adv. Energy Mater. 2016, 6, 1502175.

50

Liu, J.; Kopold, P.; Wu, C.; van Aken, P. A.; Maier, J.; Yu, Y. Uniform yolk-shell Sn4P3@C nanospheres as high-capacity and cycle-stable anode materials for sodium-ion batteries. Energy Environ. Sci. 2015, 8, 3531-3538.

51

Fan, M. P.; Chen, Y.; Xie, Y. H.; Yang, T. Z.; Shen, X. W.; Xu, N.; Yu, H. Y.; Yan, C. L. Half-cell and full-cell applications of highly stable and binder-free sodium ion batteries based on Cu3P nanowire anodes. Adv. Funct. Mater. 2016, 26, 5019-5027.

52

Gao, H.; Zhou, T. F.; Zheng, Y.; Liu, Y. Q.; Chen, J.; Liu, H. K.; Guo, Z. P. Integrated carbon/red phosphorus/graphene aerogel 3D architecture via advanced vapor-redistribution for high-energy sodium-ion batteries. Adv. Energy Mater. 2016, 6, 1601037.

53

Pei, L. K.; Zhao, Q.; Chen, C. C.; Liang, J.; Chen, J. Phosphorus nanoparticles encapsulated in graphene scrolls as a high-performance anode for sodium-ion batteries. ChemElectroChem 2015, 2, 1652-1655.

54

Lee, G. -H.; Jo, M. R.; Zhang, K.; Kang, Y. M. A reduced graphene oxide-encapsulated phosphorus/carbon composite as a promising anode material for high-performance sodium-ion batteries. J. Mater. Chem. A 2017, 5, 3683-3690.

55

Li, W. J.; Chou, S. L.; Wang, J. Z.; Liu, H. K.; Dou, S. X. Significant enhancement of the cycling performance and rate capability of the P/C composite via chemical bonding (P-C). J. Mater. Chem. A 2016, 4, 505-511.

56

Song, J. X.; Yu, Z. X.; Gordin, M. L.; Hu, S.; Yi, R.; Tang, D. H.; Walter, T.; Regula, M.; Choi, D.; Li, X. L. et al. Chemically bonded phosphorus/graphene hybrid as a high performance anode for sodium-ion batteries. Nano Lett. 2014, 14, 6329-6335.

57

Zhu, Y. J.; Wen, Y.; Fan, X. L.; Gao, T.; Han, F. D.; Luo, C.; Liou, S. C.; Wang, C. S. Red phosphorus-single-walled carbon nanotube composite as a superior anode for sodium ion batteries. ACS Nano 2015, 9, 3254-3264.

58

Song, J. X.; Yu, Z. X.; Gordin, M. L.; Li, X. L.; Peng, H. S.; Wang, D. H. Advanced sodium ion battery anode constructed via chemical bonding between phosphorus, carbon nanotube, and cross-linked polymer binder. ACS Nano 2015, 9, 11933-11941.

59

Li, W. J.; Chou, S. L.; Wang, J. Z.; Liu, H. K.; Dou, S. X. Simply mixed commercial red phosphorus and carbon nanotube composite with exceptionally reversible sodium-ion storage. Nano Lett. 2013, 13, 5480-5484.

60

Li, M. Y.; Carter, R.; Oakes, L.; Douglas, A.; Muralidharan, N.; Pint, C. L. Role of carbon defects in the reversible alloying states of red phosphorus composite anodes for efficient sodium ion batteries. J. Mater. Chem. A 2017, 5, 5266-5272.

61

Li, W. H.; Yang, Z. Z.; Li, M. S.; Jiang, Y.; Wei, X.; Zhong, X. W.; Gu, L.; Yu, Y. Amorphous red phosphorus embedded in highly ordered mesoporous carbon with superior lithium and sodium storage capacity. Nano Lett. 2016, 16, 1546-1553.

62

Li, W. H.; Hu, S. H.; Luo, X. Y.; Li, Z. L.; Sun, X. Z.; Li, M. S.; Liu, F. F.; Yu, Y. Confined amorphous red phosphorus in MOF-derived N-doped microporous carbon as a superior anode for sodium-ion battery. Adv. Mater. 2017, 29, 1605820.

63

Kim, S. O.; Manthiram, A. High-performance red P-based P-TiP2-C nanocomposite anode for lithium-ion and sodium-ion storage. Chem. Mater. 2016, 28, 5935-5942.

64

Walter, M.; Erni, R.; Kovalenko, M. V. Inexpensive antimony nanocrystals and their composites with red phosphorus as high-performance anode materials for Na-ion batteries. Sci. Rep. 2015, 5, 8418.

65

Eswaraiah, V.; Zeng, Q. S.; Long, Y.; Liu, Z. Black phosphorus nanosheets: Synthesis, characterization and applications. Small 2016, 12, 3480-3502.

66

Batmunkh, M.; Bat-Erdene, M.; Shapter, J. G. Phosphorene and phosphorene-based materials-prospects for future applications. Adv. Mater. 2016, 28, 8586-8617.

67

Du, Y. L.; Ouyang, C. Y.; Shi, S. Q.; Lei, M. S. Ab initio studies on atomic and electronic structures of black phosphorus. J. Appl. Phys. 2010, 107, 093718.

68

Liu, H.; Du, Y. C.; Deng, Y. X.; Ye, P. D. Semiconducting black phosphorus: Synthesis, transport properties and electronic applications. Chem. Soc. Rev. 2015, 44, 2732-2743.

69

Bacon, G. E. The interlayer spacing of graphite. Acta Crystallogr. 1951, 4, 558-561.

70

Morita, A. Semiconducting black phosphorus. Appl. Phys. A 1986, 39, 227-242.

71

Hultgren, R.; Gingrich, N. S.; Warren, B. E. The atomic distribution in red and black phosphorus and the crystal structure of black phosphorus. J. Chem. Phys. 1935, 3, 351-355.

72

Xu, G. L.; Chen, Z. H.; Zhong, G. M.; Liu, Y. Z.; Yang, Y.; Ma, T. Y.; Ren, Y.; Zuo, X. B.; Wu, X. H.; Zhang, X. Y. et al. Nanostructured black phosphorus/ketjenblack-multiwalled carbon nanotubes composite as high performance anode material for sodium-ion batteries. Nano Lett. 2016, 16, 3955-3965.

73

Sun, J.; Zheng, G. Y.; Lee, H. W.; Liu, N.; Wang, H. T.; Yao, H. B.; Yang, W. S.; Cui, Y. Formation of stable phosphorus-carbon bond for enhanced performance in black phosphorus nanoparticle-graphite composite battery anodes. Nano Lett. 2014, 14, 4573-4580.

74

Dahbi, M.; Yabuuchi, N.; Fukunishi, M.; Kubota, K.; Chihara, K.; Tokiwa, K.; Yu, X. F.; Ushiyama, H.; Yamashita, K.; Son, J. Y. et al. Black phosphorus as a high-capacity, high-capability negative electrode for sodium-ion batteries: Investigation of the electrode/electrolyte interface. Chem. Mater. 2016, 28, 1625-1635.

75

Hembram, K. P. S. S.; Jung, H.; Yeo, B. C.; Pai, S. J.; Kim, S.; Lee, K. R.; Han, S. S. Unraveling the atomistic sodiation mechanism of black phosphorus for sodium ion batteries by first-principles calculations. J. Phys. Chem. C 2015, 119, 15041-15046.

76

Hembram, K. P. S. S.; Jung, H.; Yeo, B. C.; Pai, S. J.; Lee, H. J.; Lee, K. R.; Han, S. S. A comparative first-principles study of the lithiation, sodiation, and magnesiation of black phosphorus for Li-, Na-, and Mg-ion batteries. Phys. Chem. Chem. Phys. 2016, 18, 21391-21397.

77

Ramireddy, T.; Xing, T.; Rahman, M. M.; Chen, Y.; Dutercq, Q.; Gunzelmann, D.; Glushenkov, A. M. Phosphorus-carbon nanocomposite anodes for lithium-ion and sodium-ion batteries. J. Mater. Chem. A 2015, 3, 5572-5584.

78

Shi, L.; Zhao, T. S. Recent advances in inorganic 2D materials and their applications in lithium and sodium batteries. J. Mater. Chem. A 2017, 5, 3735-3758.

79

Du, H. W.; Lin, X.; Xu, Z. M.; Chu, D. W. Recent developments in black phosphorus transistors. J. Mater. Chem. C 2015, 3, 8760-8775.

80

Liu, X.; Wen, Y. W.; Chen, Z. Z.; Shan, B.; Chen, R. A first-principles study of sodium adsorption and diffusion on phosphorene. Phys. Chem. Chem. Phys. 2015, 17, 16398-16404.

81

Kulish, V. V.; Malyi, O. I.; Persson, C.; Wu, P. Phosphorene as an anode material for Na-ion batteries: A first-principles study. Phys. Chem. Chem. Phys. 2015, 17, 13921-13928.

82

Tran, V.; Soklaski, R.; Liang, Y. F.; Yang, L. Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus. Phys. Rev. B 2014, 89, 235319.

83

Takao, Y.; Asahina, H.; Morita, A. Electronic structure of black phosphorus in tight binding approach. J. Phys. Soc. Jpn. 1981, 50, 3362-3369.

84

Liu, H.; Neal, A. T.; Zhu, Z.; Luo, Z.; Xu, X. F.; Tománek, D.; Ye, P. D. Phosphorene: An unexplored 2D semiconductor with a high hole mobility. ACS Nano 2014, 8, 4033-4041.

85

Li, L. K.; Yu, Y. J.; Ye, G. J.; Ge, Q. Q.; Ou, X. D.; Wu, H.; Feng, D. L.; Chen, X. H.; Zhang, Y. B. Black phosphorus field-effect transistors. Nat. Nanotechnol. 2014, 9, 372-377.

86

Engel, M.; Steiner, M.; Avouris, P. Black phosphorus photodetector for multispectral, high-resolution imaging. Nano Lett. 2014, 14, 6414-6417.

87

Qiao, J. S.; Kong, X. H.; Hu, Z. X.; Yang, F.; Ji, W. High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nat. Commun. 2014, 5, 4475.

88

Yuan, H. T.; Liu, X. G.; Afshinmanesh, F.; Li, W.; Xu, G.; Sun, J.; Lian, B.; Curto, A. G.; Ye, G. J.; Hikita, Y. et al. Polarization-sensitive broadband photodetector using a black phosphorus vertical p-n junction. Nat. Nanotechnol. 2015, 10, 707-713.

89

Dai, J.; Zeng, X. C. Bilayer phosphorene: Effect of stacking order on bandgap and its potential applications in thin-film solar cells. J. Phys. Chem. Lett. 2014, 5, 1289-1293.

90

Yang, J.; Xu, R. J.; Pei, J. J.; Myint, Y. W.; Wang, F.; Wang, Z.; Zhang, S.; Yu, Z. F.; Lu, Y. R. Optical tuning of exciton and trion emissions in monolayer phosphorene. Light Sci. Appl. 2015, 4, e312.

91

Li, W. F.; Yang, Y. M.; Zhang, G.; Zhang, Y. W. Ultrafast and directional diffusion of lithium in phosphorene for high-performance lithium-ion battery. Nano Lett. 2015, 15, 1691-1697.

92

Zhang, Y.; Wang, H. W.; Luo, Z. Z.; Tan, H. T.; Li, B.; Sun, S. N.; Li, Z.; Zong, Y.; Xu, Z. J.; Yang, Y. H. et al. An air-stable densely packed phosphorene-graphene composite toward advanced lithium storage properties. Adv. Energy Mater. 2016, 6, 1600453.

93

Nie, A. M.; Cheng, Y. C.; Ning, S. C.; Foroozan, T.; Yasaei, P.; Li, W.; Song, B. A.; Yuan, Y. F.; Chen, L.; Salehi-Khojin, A. et al. Selective ionic transport pathways in phosphorene. Nano Lett. 2016, 16, 2240-2247.

94

Li, Q.; Li, Z. Q.; Zhang, Z. W.; Li, C. X.; Ma, J. Y.; Wang, C. X.; Ge, X. L.; Dong, S. H.; Yin, L. W. Low-temperature solution-based phosphorization reaction route to Sn4P3/reduced graphene oxide nanohybrids as anodes for sodium ion batteries. Adv. Energy Mater. 2016, 6, 1600376.

95

Han, F.; Tan, C. Y. J.; Gao, Z. Q. Improving the specific capacity and cyclability of sodium-ion batteries by engineering a dual-carbon phase-modified amorphous and mesoporous iron phosphide. ChemElectroChem 2016, 3, 1054-1062.

96

Zhang, W. J.; Dahbi, M.; Amagasa, S.; Yamada, Y.; Komaba, S. Iron phosphide as negative electrode material for Na-ion batteries. Electrochem. Commun. 2016, 69, 11-14.

97

Guo, G. L.; Guo, Y. Y.; Tan, H. T.; Yu, H.; Chen, W. H.; Fong, E. L.; Yan, Q. Y. From fibrous elastin proteins to one-dimensional transition metal phosphides and their applications. J. Mater. Chem. A 2016, 4, 10893-10899.

98

Ge, X. L.; Li, Z. Q.; Yin, L. W. Metal-organic frameworks derived porous core/shell CoP@C polyhedrons anchored on 3D reduced graphene oxide networks as anode for sodium-ion battery. Nano Energy 2017, 32, 117-124.

99

Li, Z. Q.; Zhang, L. Y.; Ge, X. L.; Li, C. X.; Dong, S. H.; Wang, C. X.; Yin, L. W. Core-shell structured CoP/FeP porous microcubes interconnected by reduced graphene oxide as high performance anodes for sodium ion batteries. Nano Energy 2017, 32, 494-502.

100

Zhao, F. P.; Han, N.; Huang, W. J.; Li, J. J.; Ye, H. L.; Chen, F. J.; Li, Y. G. Nanostructured CuP2/C composites as high-performance anode materials for sodium ion batteries. J. Mater. Chem. A 2015, 3, 21754-21759.

101

Kim, S. O.; Manthiram, A. The facile synthesis and enhanced sodium-storage performance of a chemically bonded CuP2/C hybrid anode. Chem. Commun. 2016, 52, 4337-4340.

102

Komaba, S.; Murata, W.; Ishikawa, T.; Yabuuchi, N.; Ozeki, T.; Nakayama, T.; Ogata, A.; Gotoh, K.; Fujiwara, K. Electrochemical Na insertion and solid electrolyte interphase for hard-carbon electrodes and application to Na-ion batteries. Adv. Funct. Mater. 2011, 21, 3859-3867.

103

Ponrouch, A.; Goñi, A. R.; Palacín, M. R. High capacity hard carbon anodes for sodium ion batteries in additive free electrolyte. Electrochem. Commun. 2013, 27, 85-88.

104

Zhang, X. Q.; Li, X. N.; Liang, J. W.; Zhu, Y. C.; Qian, Y. T. Synthesis of MoS2@C nanotubes via the kirkendall effect with enhanced electrochemical performance for lithium ion and sodium ion batteries. Small 2016, 12, 2484-2491.

105

Wu, C.; Kopold, P.; van Aken, P. A.; Maier, J.; Yu, Y. High performance graphene/Ni2P hybrid anodes for lithium and sodium storage through 3D yolk-shell-like nanostructural design. Adv. Mater. 2017, 29, 1604015.

106

Fan, X. L.; Mao, J. F.; Zhu, Y. J.; Luo, C.; Suo, L. M.; Gao, T.; Han, F. D.; Liou, S. C.; Wang, C. S. Superior stable self-healing SnP3 anode for sodium-ion batteries. Adv. Energy Mater. 2015, 5, 1500174.

107

Usui, H.; Sakata, T.; Shimizu, M.; Sakaguchi, H. Electrochemical Na-insertion/extraction properties of Sn-P anodes. Electrochemistry 2015, 83, 810-812.

108

Zheng, L. T.; Dunlap, R. A.; Obrovac, M. N. The electrochemical reaction mechanism of tin phosphide with sodium. J. Electrochem. Soc. 2016, 163, A1188-A1191.

109

Fullenwarth, J.; Darwiche, A.; Soares, A.; Donnadieu, B.; Monconduit, L. NiP3: A promising negative electrode for Li-and Na-ion batteries. J. Mater. Chem. A 2014, 2, 2050-2059.

110

Liu, S. L.; Zhang, H. Z.; Xu, L. Q.; Ma, L. B.; Chen, X. X. Solvothermal preparation of tin phosphide as a long-life anode for advanced lithium and sodium ion batteries. J. Power Sources 2016, 304, 346-353.

111

Shin, H. S.; Jung, K. N.; Jo, Y. N.; Park, M. S.; Kim, H.; Lee, J. W. Tin phosphide-based anodes for sodium-ion batteries: Synthesis via solvothermal transformation of Sn metal and phase-dependent Na storage performance. Sci. Rep. 2016, 6, 26195.

112

Seh, Z. W.; Li, W. Y.; Cha, J. J.; Zheng, G. Y.; Yang, Y.; McDowell, M. T.; Hsu, P. C.; Cui, Y. Sulphur-TiO2 yolk-shell nanoarchitecture with internal void space for long-cycle lithium-sulphur batteries. Nat. Commun. 2013, 4, 1331.

113

Liu, N.; Wu, H.; McDowell, M. T.; Yao, Y.; Wang, C. M.; Cui, Y. A yolk-shell design for stabilized and scalable Li-ion battery alloy anodes. Nano Lett. 2012, 12, 3315-3321.

114

Hong, Y. J.; Son, M. Y.; Kang, Y. C. One-pot facile synthesis of double-shelled SnO2 yolk-shell-structured powders by continuous process as anode materials for Li-ion batteries. Adv. Mater. 2013, 25, 2279-2283.

115

Wang, Y. X.; Yang, J. P.; Chou, S. L.; Liu, H. K.; Zhang, W. X.; Zhao, D. Y.; Dou, S. X. Uniform yolk-shell iron sulfide-carbon nanospheres for superior sodium-iron sulfide batteries. Nat. Commun. 2015, 6, 8689.

116

Liu, N.; Lu, Z. D.; Zhao, J.; McDowell, M. T.; Lee, H. W.; Zhao, W. T.; Cui, Y. A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes. Nat. Nanotechnol. 2014, 9, 187-192.

117

Hall, J. W.; Membreno, N.; Wu, J.; Celio, H.; Jones, R. A.; Stevenson, K. J. Low-temperature synthesis of amorphous FeP2 and its use as anodes for Li ion batteries. J. Am. Chem. Soc. 2012, 134, 5532-5535.

118

Lu, Y. Y.; Zhou, P. F.; Lei, K. X.; Zhao, Q.; Tao, Z. L.; Chen, J. Selenium phosphide (Se4P4) as a new and promising anode material for sodium-ion batteries. Adv. Energy Mater. 2017, 7, 1601973.

119

Duveau, D.; Israel, S. S.; Fullenwarth, J.; Cunin, F.; Monconduit, L. Pioneer study of SiP2 as negative electrode for Li- and Na-ion batteries. J. Mater. Chem. A 2016, 4, 3228-3232.

120

Yabuuchi, N.; Matsuura, Y.; Ishikawa, T.; Kuze, S.; Son, J. Y.; Cui, Y. T.; Oji, H.; Komaba, S. Phosphorus electrodes in sodium cells: Small volume expansion by sodiation and the surface-stabilization mechanism in aprotic solvent. ChemElectroChem 2014, 1, 580-589.

121

Shi, Y. M.; Zhang, B. Recent advances in transition metal phosphide nanomaterials: Synthesis and applications in hydrogen evolution reaction. Chem. Soc. Rev. 2016, 45, 1529-1541.

122

Tang, C.; Gan, L. F.; Zhang, R.; Lu, W. B.; Jiang, X. E.; Asiri, A. M.; Sun, X. P.; Wang, J.; Chen, L. Ternary FexCo1-xP nanowire array as a robust hydrogen evolution reaction electrocatalyst with Pt-like activity: Experimental and theoretical insight. Nano Lett. 2016, 16, 6617-6621.

123

Tang, C.; Zhang, R.; Lu, W. B.; He, L. B.; Jiang, X. E.; Asiri, A. M.; Sun, X. P. Fe-doped CoP nanoarray: A monolithic multifunctional catalyst for highly efficient hydrogen generation. Adv. Mater. 2017, 29, 1602441.

124

Gong, M.; Dai, H. J. A mini review of NiFe-based materials as highly active oxygen evolution reaction electrocatalysts. Nano Res. 2015, 8, 23-39.

Publication history
Copyright
Acknowledgements

Publication history

Received: 30 March 2017
Revised: 04 May 2017
Accepted: 07 May 2017
Published: 24 August 2017
Issue date: December 2017

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany 2017

Acknowledgements

Acknowledgements

This work is supported by the National Natural Science Foundation of China (No. 51673157), Australian Renewable Energy Agency (ARENA) Project (No. G00849), and the Australian Research Council (ARC) linkage project (No. LP120200432). Q. X. thanks for funding support from the China Scholarship Council (CSC). The authors would like to thank Dr. Tania Silver and Dingping Cui for critical reading of the paper.

Return