Journal Home > Volume 11 , Issue 2

In photoelectrochemical (PEC) water splitting, charge separation and collection by the electric field in the photoactive material are the most important factors for improved conversion efficiency. Hence, ferroelectric oxides, in which electrons are the majority carriers, are considered promising photoanode materials because their high built-in potential, provided by their spontaneous polarization, can significantly enhance the separation and drift of photogenerated carriers. In this regard, the PEC properties of BiFeO3 thin-film photoanodes with different crystallographic orientations and consequent ferroelectric domain structures are investigated. As the crystallographic orientation changes from (001)pc via (110)pc to (111)pc, the ferroelastic domains in epitaxial BiFeO3 thin films become mono-variant and the spontaneous polarization levels increase to 110 μC/cm2. Consequently, the photocurrent density at 0 V vs. Ag/AgCl increases approximately 5.3-fold and the onset potential decreases by 0.180 V in the downward polarization state. It is further demonstrated that ferroelectric switching in the (111)pc BiFeO3 thin-film photoanode leads to an approximate change of 8, 000% in the photocurrent density and a 0.330 V shift in the onset potential. This study strongly suggests that domain-engineered ferroelectric materials can be used as effective charge separation and collection layers for efficient solar water-splitting photoanodes.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Domain-engineered BiFeO3 thin-film photoanodes for highly enhanced ferroelectric solar water splitting

Show Author's information Jaesun Song1Taemin Ludvic Kim2Jongmin Lee1Sam Yeon Cho3Jaeseong Cha1Sang Yun Jeong1Hyunji An1Wan Sik Kim1Yen-Sook Jung1Jiyoon Park1Gun Young Jung1Dong-Yu Kim1Ji Young Jo1Sang Don Bu3Ho Won Jang2( )Sanghan Lee1( )
School of Materials Science and EngineeringGwangju Institute of Science and Technology (GIST)Gwangju61005Republic of Korea
Department of Materials Science and EngineeringResearch Institute of Advanced MaterialsSeoul National UniversitySeoul08826Republic of Korea
Department of PhysicsChonbuk National UniversityJeonju54896Republic of Korea

Abstract

In photoelectrochemical (PEC) water splitting, charge separation and collection by the electric field in the photoactive material are the most important factors for improved conversion efficiency. Hence, ferroelectric oxides, in which electrons are the majority carriers, are considered promising photoanode materials because their high built-in potential, provided by their spontaneous polarization, can significantly enhance the separation and drift of photogenerated carriers. In this regard, the PEC properties of BiFeO3 thin-film photoanodes with different crystallographic orientations and consequent ferroelectric domain structures are investigated. As the crystallographic orientation changes from (001)pc via (110)pc to (111)pc, the ferroelastic domains in epitaxial BiFeO3 thin films become mono-variant and the spontaneous polarization levels increase to 110 μC/cm2. Consequently, the photocurrent density at 0 V vs. Ag/AgCl increases approximately 5.3-fold and the onset potential decreases by 0.180 V in the downward polarization state. It is further demonstrated that ferroelectric switching in the (111)pc BiFeO3 thin-film photoanode leads to an approximate change of 8, 000% in the photocurrent density and a 0.330 V shift in the onset potential. This study strongly suggests that domain-engineered ferroelectric materials can be used as effective charge separation and collection layers for efficient solar water-splitting photoanodes.

Keywords: BiFeO3, ferroelectric, orientation, photoelectrochemical, domain, pulsed laser deposition

References(54)

1

Chapin, D. M.; Fuller, C. S.; Pearson, G. L. A new silicon p–n junction photocell for converting solar radiation into electrical power. J. Appl. Phys. 1954, 25, 676–677.

2

O'Regan, B.; Grätzel, M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 1991, 353, 737–740.

3

Britt, J.; Ferekides, C. Thin-film CdS/CdTe solar cell with 15.8% efficiency. Appl. Phys. Lett. 1993, 62, 2851–2852.

4

Chitambar, M.; Wang, Z. J.; Liu, Y. M.; Rockett, A.; Maldonado, S. Dye-sensitized photocathodes: Efficient light-stimulated hole injection into p-GaP under depletion conditions. J. Am. Chem. Soc. 2012, 134, 10670–10681.

5

Gur, I.; Fromer, N. A.; Geier, M. L.; Alivisatos, A. P. Air- stable all-inorganic nanocrystal solar cells processed from solution. Science 2005, 310, 462–465.

6

Ginley, D.; Green, M. A.; Collins, R. Solar energy conversion toward 1 terawatt. MRS Bull. 2008, 33, 355–364.

7

An, H.; Han, J. Y.; Kim, B.; Song, J.; Jeong, S. Y.; Franchini, C.; Bark, C. W.; Lee, S. Large enhancement of the photovoltaic effect in ferroelectric complex oxides through bandgap reduction. Sci. Rep. 2016, 6, 28313.

8

Fridkin, V. M. Bulk photovoltaic effect in noncentrosymmetric crystals. Crystallogr. Rep. 2001, 46, 654–658.

9

Pantel, D.; Chu, Y. -H.; Martin, L. W.; Ramesh, R.; Hesse, D.; Alexe, M. Switching kinetics in epitaxial BiFeO3 thin films. J. Appl. Phys. 2010, 107, 084111.

10

Clark, J. S.; Robertson, J. Band gap and Schottky barrier heights of multiferroic BiFeO3. Appl. Phys. Lett. 2007, 90, 132903.

11

Hauser, A. J.; Zhang, J.; Mier, L.; Ricciardo, R. A.; Woodward, P. M.; Gustafson, T. L.; Brillson, L. J.; Yang, F. Y. Characterization of electronic structure and defect states of thin epitaxial BiFeO3 films by UV–visible absorption and cathodoluminescence spectroscopies. Appl. Phys. Lett. 2008, 92, 222901.

12

Yi, H. T.; Choi, T.; Choi, S. G.; Oh, S. G.; Cheong, S. W. Mechanism of the switchable photovoltaic effect in ferroelectric BiFeO3. Adv. Mater. 2011, 23, 3403–3407.

13

Neaton, J. B.; Ederer, C.; Waghmare, U. V.; Spaldin, N. A.; Rabe, K. M. First-principles study of spontaneous polarization in multiferroic BiFeO3. Phys. Rev. B 2005, 71, 014113.

14

Wang, Y. Y. A giant polarization value in bismuth ferrite thin films. J. Alloys Compd. 2011, 509, L362–L364.

15

Kim, T. H.; Baek, S. H.; Yang, S. M.; Kim, Y. S.; Jeon, B. C.; Lee, D.; Chung, J. -S.; Eom, C. B.; Yoon, J. -G.; Noh, T. W. Polarity-dependent kinetics of ferroelectric switching in epitaxial BiFeO3(111) capacitors. Appl. Phys. Lett. 2011, 99, 012905.

16

Wu, J. G.; Wang, J. Orientation dependence of ferroelectric behavior of BiFeO3 thin films. J. Appl. Phys. 2009, 106, 104111.

17

Béa, H.; Bibes, M.; Zhu, X. -H.; Fusil1, S.; Bouzehouane, K.; Petit, S.; Kreisel, J.; Barthélémy, A. Crystallographic, magnetic, and ferroelectric structures of bulklike BiFeO3 thin films. Appl. Phys. Lett. 2008, 93, 072901.

18

Li, J. F.; Wang, J. L.; Wuttig, M.; Ramesh, R.; Wang, N. G.; Ruette, B.; Pyatakov, A. P.; Zvezdin, A. K.; Viehland, D. Dramatically enhanced polarization in (001), (101), and (111) BiFeO3 thin films due to epitiaxial-induced transitions. Appl. Phys. Lett. 2004, 84, 5261–5263.

19

Wang, J.; Neaton, J. B.; Zheng, H.; Nagarajan, V.; Ogale, S. B.; Liu, B.; Viehland, D.; Vaithyanathan, V.; Schlom, D. G.; Waghmare, U. V. et al. Epitaxial BiFeO3 multiferroic thin film heterostructures. Science 2003, 299, 1719–1722.

20

Singh, S. K.; Kim, Y. K.; Funakubo, H.; Ishiwara, H. Epitaxial BiFeO3 thin films fabricated by chemical solution deposition. Appl. Phys. Lett. 2006, 88, 162904.

21

Chen, Z. H.; He, L.; Zhang, F.; Jiang, J.; Meng, J. W.; Zhao, B. Y.; Jiang, A. Q. The conduction mechanism of large on/off ferroelectric diode currents in epitaxial (111) BiFeO3 thin film. J. Appl. Phys. 2013, 113, 184106.

22

Zhu, J.; Luo, W. B.; Li, Y. R. Growth and properties of BiFeO3 thin films deposited on LaNiO3-buffered SrTiO3 (001) and (111) substrates by PLD. Appl. Surf. Sci. 2008, 255, 3466–3469.

23

Sone, K.; Naganuma, H.; Miyazaki, T.; Nakajima, T.; Okamura, S. Crystal structures and electrical properties of epitaxial BiFeO3 thin films with (001), (110), and (111) orientations. Jpn. J. Appl. Phys. 2010, 49, 09MB03.

24

Kubel, F.; Schmid, H. Structure of a ferroelectric and ferroelastic monodomain crystal of the perovskite BiFeO3. Acta Cryst. B 1990, 46, 698–702.

25

Baek, S. -H.; Folkman, C. M.; Park, J. -W.; Lee, S.; Bark, C. -W.; Tybell, T.; Eom, C. -B. The nature of polarization fatigue in BiFeO3. Adv. Mater. 2011, 23, 1621–1625.

26

Das, R. R.; Kim, D. M.; Baek, S. H.; Eom, C. B.; Zavaliche, F.; Yang, S. Y.; Ramesh, R.; Chen, Y. B.; Pan, X. Q.; Ke, X. et al. Synthesis and ferroelectric properties of epitaxial BiFeO3 thin films grown by sputtering. Appl. Phys. Lett. 2006, 88, 242904.

27

Streiffer, S. K.; Parker, C. B.; Romanov, A. E.; Lefevre, M. J.; Zhao, L.; Speck, J. S.; Pompe, W.; Foster, C. M.; Bai, G. R. Domain patterns in epitaxial rhombohedral ferroelectric films. I. Geometry and experiments. J. Appl. Phys. 1998, 83, 2742–2753.

28

Taylor, D. V.; Damjanovic, D. Evidence of domain wall contribution to the dielectric permittivity in PZT thin films at sub-switching fields. J. Appl. Phys. 1997, 82, 1973–1975.

29

Jang, H. W.; Ortiz, D.; Baek, S. H.; Folkman, C. M.; Das, R. R.; Shafer, P.; Chen, Y. B.; Nelson, C. T.; Pan, X. Q.; Ramesh, R. et al. Domain engineering for enhanced ferroelectric properties of epitaxial (001) BiFeO thin films. Adv. Mater. 2009, 21, 817–823.

30

Cruz, M. P.; Chu, Y. -H.; Zhang, J. X.; Yang, P. L.; Zavaliche, F.; He, Q.; Shafer, P.; Chen, L. Q.; Ramesh, R. Strain control of domain-wall stability in epitaxial BiFeO3 (110) films. Phys. Rev. Lett. 2007, 99, 217601.

31

Liu, Q.; Zhou, Y.; You, L.; Wang, J. L.; Shen, M. R.; Fang, L. Enhanced ferroelectric photoelectrochemical properties of polycrystalline BiFeO3 film by decorating with Ag nanoparticles. Appl. Phys. Lett. 2016, 108, 022902.

32

Ji, W.; Yao, K.; Lim, Y. F.; Liang, Y. C.; Suwardi, A. Epitaxial ferroelectric BiFeO3 thin films for unassisted photocatalytic water splitting. Appl. Phys. Lett. 2013, 103, 062901.

33

Rong, N. N.; Chu, M. S.; Tang, Y. L.; Zhang, C.; Cui, X.; He, H. C.; Zhang, Y. H.; Xiao, P. Improved photoelectrocatalytic properties of Ti-doped BiFeO3 films for water oxidation. J. Mater. Sci. 2016, 51, 5712–5723.

34

Moniz, S. J. A.; Quesada-Cabrera, R.; Blackman, C. S.; Tang, J. W.; Southern, P.; Weaver, P. M.; Carmalt, C. J. A simple, low-cost CVD route to thin films of BiFeO3 for efficient water photo-oxidation. J. Mater. Chem. A 2014, 2, 2922–2927.

35

Cao, D. W.; Wang, Z. J.; Nasori; Wen, L. Y.; Mi, Y.; Lei, Y. Switchable charge-transfer in the photoelectrochemical energy-conversion process of ferroelectric BiFeO3 photoelectrodes. Angew. Chem., Int. Ed. 2014, 53, 11027–11031.

36

Rojac, T.; Bencan, A.; Drazic, G.; Sakamoto, N.; Ursic, H.; Jancar, B.; Tavcar, G.; Makarovic, M.; Walker, J.; Malic, B. et al. Domain-wall conduction in ferroelectric BiFeO3 controlled by accumulation of charged defects. Nat. Mater. 2017, 16, 322–327.

37

Huang, Y. -L.; Chang, W. S.; Van, C. N.; Liu, H. -J.; Tsai, K. -A.; Chen, J. -W.; Kuo, H. -H.; Tzeng, W. -Y.; Chen, Y. -C.; Wu, C. -L. et al. Tunable photoelectrochemical performance of Au/BiFeO3 heterostructure. Nanoscale 2016, 8, 15795– 15801.

38

Chen, S. Y.; Wang, L. -W. Thermodynamic oxidation and reduction potentials of photocatalytic semiconductors in aqueous solution. Chem. Mater. 2012, 24, 3659–3666.

39

Choi, T.; Lee, S.; Choi, Y. J.; Kiryukhin, V.; Cheong, S. W. Switchable ferroelectric diode and photovoltaic effect in BiFeO3. Science 2009, 324, 63–66.

40

Chen, J.; Lu, H. D.; Liu, H. J.; Chu, Y. -H.; Dunn, S.; Ostrikov, K. K.; Gruverman, A.; Valanoor, N. Interface control of surface photochemical reactivity in ultrathin epitaxial ferroelectric films. Appl. Phys. Lett. 2013, 102, 182904.

41

Fang, L.; You, L.; Zhou, Y.; Ren, P.; Lim, Z. S.; Wang, J. L. Switchable photovoltaic response from polarization modulated interfaces in BiFeO3 thin films. Appl. Phys. Lett. 2014, 104, 142903.

42

Rioult, M.; Datta, S.; Stanescu, D.; Stanescu, S.; Belkhou, R.; Maccherozzi, F.; Magnan, H.; Barbier, A. Tailoring the photocurrent in BaTiO3/Nb: SrTiO3 photoanodes by controlled ferroelectric polarization. Appl. Phys. Lett. 2015, 107, 103901.

43

Yun, K. Y.; Noda, M.; Okuyama, M.; Saeki, H.; Tabata, H.; Saito, K. Structural and multiferroic properties of BiFeO3 thin films at room temperature. J. Appl. Phys. 2004, 96, 3399–3403.

44

Xu, G. Y.; Hiraka, H.; Shirane, G.; Li, J. F.; Wang, J. L.; Viehland, D. Low symmetry phase in (001) BiFeO3 epitaxial constrained thin films. Appl. Phys. Lett. 2005, 86, 182905.

45

Béa, H.; Bibes, M.; Fusil, S.; Bouzehouane, K.; Jacquet, E.; Rode, K.; Bencok, P.; Barthélémy, A. Investigation on the origin of the magnetic moment of BiFeO3 thin films by advanced X-ray characterizations. Phys. Rev. B 2006, 74, 020101(R).

46

Chu, Y. -H.; Zhao, T.; Cruz, M. P.; Zhan, Q.; Yang, P. L.; Martin, L. W.; Huijben, M.; Yang, C. H.; Zavaliche, F.; Zheng, H. et al. Ferroelectric size effects in multiferroic BiFeO3 thin films. Appl. Phys. Lett. 2007, 90, 252906.

47

Lewis, N. S. A quantitative investigation of the open-circuit photovoltage at the semiconductor/liquid interface. J. Electrochem. Soc. 1984, 131, 2496–2503.

48

Walter, M. G.; Warren, E. L.; McKone, J. R.; Boettcher, S. W.; Mi, Q. X.; Santori, E. A.; Lewis, N. S. Solar water splitting cells. Chem. Rev. 2010, 110, 6446–6473.

49

Wang, G. M.; Ling, Y. C.; Wheeler, D. A.; George, K. E. N.; Horsley, K.; Heske, C.; Zhang, J. Z.; Li, Y. Facile synthesis of highly photoactive α-Fe2O3-based films for water oxidation. Nano Lett. 2011, 11, 3503–3509.

50

Wang, Z. J.; Cao, D. W.; Wen, L. Y.; Xu, R.; Obergfell, M.; Mi, Y.; Zhan, Z. B.; Nasori, N.; Demsar, J.; Lei, Y. Manipulation of charge transfer and transport in plasmonic- ferroelectric hybrids for photoelectrochemical applications. Nat. Commun. 2016, 7, 10348.

51

Liao, L. B.; Zhang, Q. H.; Su, Z. H.; Zhao, Z. Z.; Wang, Y. N.; Li, Y.; Lu, X. X.; Wei, D. G.; Feng, G. Y.; Yu, Q. K. et al. Efficient solar water-splitting using a nanocrystalline CoO photocatalyst. Nat. Nanotechnol. 2014, 9, 69–73.

52

Xu, H. -M.; Wang, H. C.; Shi, J.; Lin, Y. H.; Nan, C. W. Photoelectrochemical performance observed in Mn-doped BiFeO3 heterostructured thin films. Nanomaterials 2016, 6, 215.

53

Pintilie, L.; Alexe, M. Metal-ferroelectric-metal heterostructures with Schottky contacts. I. Influence of the ferroelectric properties. J. Appl. Phys. 2005, 98, 124103.

54

Yang, S. Y.; Seidel, J.; Byrnes, S. J.; Shafer, P.; Yang, C. -H.; Rossell, M. D.; Yu, P.; Chu, Y. -H.; Scott, J. F.; Ager, J. W. et al. Above-bandgap voltages from ferroelectric photovoltaic devices. Nat. Nanotechnol. 2010, 5, 143–147.

File
nr-11-2-642_ESM.pdf (2.2 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 07 March 2017
Revised: 02 May 2017
Accepted: 07 May 2017
Published: 09 June 2017
Issue date: February 2018

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany 2017

Acknowledgements

Acknowledgements

The authors gratefully acknowledge the financial support from the Basic Science Research Program (No. NRF-2014R1A1A2053552) and the Future Material Discovery Program (No. NRF-2016M3D1A1027666) through the National Research Foundation of Korea, and the International Energy Joint R & D Program through the Korea Institute of Energy Technology Evaluation and Planning (No. 20168510011350), and by the GIST (Gwangju Institute of Science and Technology) Research Institute (GRI) Project through a grant provided by GIST in 2016.

Return