Journal Home > Volume 11 , Issue 1

In the current study, Nafion is adopted as a dispersant for assisting the water-phase exfoliation of MoS2. The completely ionized hydrophilic sulfonic groups and hydrophobic polytetrafluoroethylene backbone permit strong non-covalent bonding interactions between Nafion and exfoliated nanosheets for stabilization and functionalization to obtain Nafion–modified MoS2 (N-MoS2) nanocomposites. These interactions are stable in different pH environments. The concentration of Nafion influences the exfoliation efficiency and the size of the exfoliated nanosheets. N–MoS2/Nafion composite membranes are prepared. The N-MoS2 nanocomposite exhibits good dispersibility in a Nafion matrix, benefitting from the functionalization of Nafion. The N-MoS2/Nafion composite membrane shows excellent near-infrared light-controllable multi-shape-memory performance with convenient operation. The Nafion-assisted water-phase exfoliation method shows good efficiency, convenient operation, environmental benignity, and broad application potential.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Nafion-assisted exfoliation of MoS2 in water phase and the application in quick-response NIR light controllable multi-shape memory membrane

Show Author's information Wei JiaBeibei Tang( )Peiyi Wu( )
State Key Laboratory of Molecular Engineering of PolymersDepartment of Macromolecular ScienceFudan UniversityShanghai200433China

Abstract

In the current study, Nafion is adopted as a dispersant for assisting the water-phase exfoliation of MoS2. The completely ionized hydrophilic sulfonic groups and hydrophobic polytetrafluoroethylene backbone permit strong non-covalent bonding interactions between Nafion and exfoliated nanosheets for stabilization and functionalization to obtain Nafion–modified MoS2 (N-MoS2) nanocomposites. These interactions are stable in different pH environments. The concentration of Nafion influences the exfoliation efficiency and the size of the exfoliated nanosheets. N–MoS2/Nafion composite membranes are prepared. The N-MoS2 nanocomposite exhibits good dispersibility in a Nafion matrix, benefitting from the functionalization of Nafion. The N-MoS2/Nafion composite membrane shows excellent near-infrared light-controllable multi-shape-memory performance with convenient operation. The Nafion-assisted water-phase exfoliation method shows good efficiency, convenient operation, environmental benignity, and broad application potential.

Keywords: MoS2, exfoliation, Nafion, multi-shape memory membrane

References(45)

1

Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. A.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666-669.

2

Wang, H. T.; Lu, Z. Y.; Xu, S. C.; Kong, D. S.; Cha, J. J.; Zheng, G. Y.; Hsu, P. C.; Yan, K.; Bradshaw, D.; Prinz, F. B. et al. Electrochemical tuning of vertically aligned MoS2 nanofilms and its application in improving hydrogen evolution reaction. Proc. Natl. Acad. Sci. USA 2013, 110, 19701-19706.

3

Bang, G. S.; Nam, K. W.; Kim, J. Y.; Shin, J.; Choi, J. W.; Choi, S. Y. Effective liquid-phase exfoliation and sodium ion battery application of MoS2 nanosheets. ACS Appl. Mater. Interfaces 2014, 6, 7084-7089.

4

Gopalakrishnan, D.; Damien, D.; Shaijumon, M. M. MoS2 quantum dot-interspersed exfoliated MoS2 nanosheets. ACS Nano 2014, 8, 5297-5303.

5

Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183-191.

6

Cho, H. B.; Tokoi, Y.; Tanaka, S.; Suematsu, H.; Suzuki, T.; Jiang, W. H.; Niihara, K.; Nakayama, T. Modification of BN nanosheets and their thermal conducting properties in nanocomposite film with polysiloxane according to the orientation of BN. Compos. Sci. Technol. 2011, 71, 1046-1052.

7

Li, Y. G.; Wang, H. L.; Xie, L. M.; Liang, Y. Y.; Hong, G. S.; Dai, H. J. MoS2 nanoparticles grown on graphene: An advanced catalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 2011, 133, 7296-7299.

8

Hwang, H.; Kim, H.; Cho, J. MoS2 nanoplates consisting of disordered graphene-like layers for high rate lithium battery anode materials. Nano Lett. 2011, 11, 4826-4830.

9

Ou, J. Z.; Chrimes, A. F.; Wang, Y. C.; Tang, S. Y.; Strano, M. S.; Kalantar-zadeh, K. Ion-driven photoluminescence modulation of quasi-two-dimensional MoS2 nanoflakes for applications in biological systems. Nano Lett. 2014, 14, 857-863.

10

Lei, Z. Y.; Zhou, Y. Y.; Wu, P. Y. Simultaneous exfoliation and functionalization of MoSe2 nanosheets to prepare "smart" nanocomposite hydrogels with tunable dual stimuli-responsive behavior. Small 2016, 12, 3112-3118.

11

Zhang, M.; Howe, R. C. T.; Woodward, R. I.; Kelleher, E. J. R.; Torrisi, F.; Hu, G. H.; Popov, S. V.; Taylor, J. R.; Hasan, T. Solution processed MoS2-PVA composite for sub-bandgap mode-locking of a wideband tunable ultrafast Er: Fiber laser. Nano Res. 2015, 8, 1522-1534.

12

Tongay, S.; Fan, W.; Kang, J.; Park, J.; Koldemir, U.; Suh, J.; Narang, D. S.; Liu, K.; Ji, J.; Li, J. B. et al. Tuning interlayer coupling in large-area heterostructures with CVD-grown MoS2 and WS2 monolayers. Nano Lett. 2014, 14, 3185-3190.

13

Losurdo, M.; Giangregorio, M. M.; Capezzuto, P.; Bruno, G. Graphene CVD growth on copper and nickel: Role of hydrogen in kinetics and structure. Phys. Chem. Chem. Phys. 2011, 13, 20836-20843.

14

Feng, K.; Tang, B. B.; Wu, P. Y. Selective growth of MoS2 for proton exchange membranes with extremely high selectivity. ACS Appl. Mater. Interfaces 2013, 5, 13042-13049.

15

Lei, Z. Y.; Zhu, W. C.; Sun, S. T.; Wu, P. Y. MoS2-based dual-responsive flexible anisotropic actuators. Nanoscale 2016, 8, 18800-18807.

16

Coleman, J. N.; Lotya, M.; O'Neill, A.; Bergin, S. D.; King, P. J.; Khan, U.; Young, K.; Gaucher, A.; De, S.; Smith, R. J. et al. Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 2011, 331, 568-571.

17

Liu, J. Q.; Zeng, Z. Y.; Cao, X. H.; Lu, G.; Wang, L. H.; Fan, Q. L.; Huang, W.; Zhang, H. Preparation of MoS2-polyvinylpyrrolidone nanocomposites for flexible nonvolatile rewritable memory devices with reduced graphene oxide electrodes. Small 2012, 8, 3517-3522.

18

Wang, D.; Song, L.; Zhou, K. Q.; Yu, X. J.; Hu, Y.; Wang, J. Anomalous nano-barrier effects of ultrathin molybdenum disulfide nanosheets for improving the flame retardance of polymer nanocomposites. J. Mater. Chem. A 2015, 3, 14307-14317.

19

Bari, R.; Parviz, D.; Khabaz, F.; Klaassen, C. D.; Metzler, S. D.; Hansen, M. J.; Khare, R.; Green, M. J. Liquid phase exfoliation and crumpling of inorganic nanosheets. Phys. Chem. Chem. Phys. 2015, 17, 9383-9393.

20

Sim, H.; Lee, J.; Park, B.; Kim, S. J.; Kang, S.; Ryu, W.; Jun, S. C. High-concentration dispersions of exfoliated MoS2 sheets stabilized by freeze-dried silk fibroin powder. Nano Res. 2016, 9, 1709-1722.

21

Guan, G. J.; Zhang, S. Y.; Liu, S. H.; Cai, Y. Q.; Low, M.; Teng, C. P.; Phang, I. Y.; Cheng, Y.; Duei, K. L.; Srinivasan, B. M. et al. Protein induces layer-by-layer exfoliation of transition metal dichalcogenides. J. Am. Chem. Soc. 2015, 137, 6152-6155.

22

Smitha, B.; Sridhar, S.; Khan, A. A. Solid polymer electrolyte membranes for fuel cell applications-A review. J. Membrane Sci. 2005, 259, 10-26.

23

Jia, W.; Feng, K.; Tang, B. B.; Wu, P. Y. β-Cyclodextrin modified silica nanoparticles for Nafion based proton exchange membranes with significantly enhanced transport properties. J. Mater. Chem. A 2015, 3, 15607-15615.

24

Fontananova, E.; Cucunato, V.; Curcio, E.; Trotta, F.; Biasizzo, M.; Drioli, E.; Barbieri, G. Influence of the preparation conditions on the properties of polymeric and hybrid cation exchange membranes. Electrochim. Acta 2012, 66, 164-172.

25

Xie, T.; Page, K. A.; Eastman, S. A. Strain-based temperature memory effect for Nafion and its molecular origins. Adv. Funct. Mater. 2011, 21, 2057-2066.

26

Kunzelman, J.; Chung, T.; Mather, P. T.; Weder, C. Shape memory polymers with built-in threshold temperature sensors. J. Mater. Chem. 2008, 18, 1082-1086.

27

Kim, S.; Sitti, M.; Xie, T.; Xiao, X. C. Reversible dry micro-fibrillar adhesives with thermally controllable adhesion. Soft Matter 2009, 5, 3689-3693.

28

Sokolowski, W.; Metcalfe, A.; Hayashi, S.; Yahia, L.; Raymond, J. Medical applications of shape memory polymers. Biomed. Mater. 2007, 2, S23.

29

El Feninat, F.; Laroche, G.; Fiset, M.; Mantovani, D. Shape memory materials for biomedical applications. Adv. Eng. Mater. 2002, 4, 91.

DOI
30

Xie, T. Tunable polymer multi-shape memory effect. Nature 2010, 464, 267-270.

31

Chou, S. S.; Kaehr, B.; Kim, J.; Foley, B. M.; De, M.; Hopkins, P. E.; Huang, J. X.; Brinker, C. J.; Dravid, V. P. Chemically exfoliated MoS2 as near-infrared photothermal agents. Angew. Chem. Int. Ed. 2013, 125, 4254-4258.

32

Yin, W. Y.; Yan, L.; Yu, J.; Tian, G.; Zhou, L. J.; Zheng, X. P.; Zhang, X.; Yong, Y.; Li, J.; Gu, Z. J. et al. High-throughput synthesis of single-layer MoS2 nanosheets as a near-infrared photothermal-triggered drug delivery for effective cancer therapy. ACS Nano 2014, 8, 6922-6933.

33

Wang, N.; Wei, F.; Qi, Y. H.; Li, H. X.; Lu, X.; Zhao, G. Q.; Xu, Q. Synthesis of strongly fluorescent molybdenum disulfide nanosheets for cell-targeted labeling. ACS Appl. Mater. Interfaces 2014, 6, 19888-19894.

34

Matte, H. S. S. R.; Gomathi, A.; Manna, A. K.; Late, D. J.; Datta, R.; Pati, S. K.; Rao, C. N. R. MoS2 and WS2 analogues of graphene. Angew. Chem. Int. Ed. 2010, 122, 4153-4156.

35

Fujimura, M.; Hashimoto, T.; Kawai, H. Small-angle X-ray scattering study of perfluorinated ionomer membranes. 1. Origin of two scattering maxima. Macromolecules 1981, 14, 1309-1315.

36

Lee, C.; Yan, H. G.; Brus, L. E.; Heinz, T. F.; Hone, J.; Ryu, S. Anomalous lattice vibrations of single-and few-layer MoS2. ACS Nano 2010, 4, 2695-2700.

37

Szajdzinska-Pietek, E.; Wolszczak, M.; Plonka, A.; Schlick, S. Structure and dynamics of micellar aggregates in aqueous Nafion solutions reported by electron spin resonance and fluorescence probes. Macromolecules 1999, 32, 7454-7460.

38

Blanch, A. J.; Lenehan, C. E.; Quinton, J. S. Optimizing surfactant concentrations for dispersion of single-walled carbon nanotubes in aqueous solution. J. Phys. Chem. B 2010, 114, 9805-9811.

39

Yang, L. J.; Tang, B. B.; Wu, P. Y. A novel proton exchange membrane prepared from imidazole metal complex and Nafion for low humidity. J. Membrane Sci. 2014, 467, 236-243.

40

De Almeida, S. H.; Kawano, Y. Thermal behavior of Nafion membranes. J. Therm. Anal. Calorim. 1999, 58, 569-577.

41

Singh, R. K.; Kunimatsu, K.; Miyatake, K.; Tsuneda, T. Experimental and theoretical infrared spectroscopic study on hydrated Nafion membrane. Macromolecules 2016, 49, 6621-6629.

42

Sahu, S.; Behera, B.; Maiti, T. K.; Mohapatra, S. Simple one-step synthesis of highly luminescent carbon dots from orange juice: Application as excellent bio-imaging agents. Chem. Commun. 2012, 48, 8835-8837.

43

Zhao, Q.; Qi, H. J.; Xie, T. Recent progress in shape memory polymer: New behavior, enabling materials, and mechanistic understanding. Prog. Polym. Sci. 2015, 49-50, 79-120.

44

Kawano, Y.; Wang, Y. Q.; Palmer, R. A.; Aubuchon, S. R. Stress-strain curves of Nafion membranes in acid and salt forms. Polímeros 2002, 12, 96-101.

45

Kundu, S.; Simon, L. C.; Fowler, M.; Grot, S. Mechanical properties of NafionTM electrolyte membranes under hydrated conditions. Polymer 2005, 46, 11707-11715.

File
nr-11-1-542_ESM.pdf (2.5 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 28 December 2016
Revised: 04 May 2017
Accepted: 07 May 2017
Published: 01 July 2017
Issue date: January 2018

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany 2017

Acknowledgements

Acknowledgements

We gratefully acknowledge the financial support from the National Key Research and Development Program of China (No. 2016YFA0203302).

Return