Journal Home > Volume 11 , Issue 1

Impedance matching is important for achieving high-efficiency microwave absorbers. The high conductivity of dielectric loss materials such as pure metals and carbon nanomaterials generally results in poor absorption owing to the low impedance matching between the absorbers and air. Carbon nanostructures are very promising candidates for high-efficiency absorption because of their attractive features including low density, high surface area, and good stability. Herein, a new strategy is proposed to improve the impedance matching of dielectric loss materials using electrospun carbon nanofibers as an example. The carbon nanofibers are coated with specifically designed gradient multilayer nanofilms with gradually increasing electroconductibility synthesized by doping ZnO with different Al2O3 content (AZO) by atomic layer deposition. The gradient nanofilms are composed of five layers of dielectric films, namely, pure Al2O3, AZO (5:1, the pulse cycle ratio of ZnO to Al2O3), pure ZnO, AZO (10:1), and AZO (20:1). The versatile gradient films serve as intermediate layers to tune the impedance matching between air and the carbon nanofiber surfaces. Therefore, the carbon nanofibers coated with gradient films of rationally selected thicknesses exhibit remarkably enhanced microwave absorption performance, and the optimal reflection loss reaches?58.5 dB at 16.2 GHz with a thickness of only 1.8 mm. This work can help further understand the contribution of impedance matching to microwave absorption. Our strategy is general and can be applied to improve the absorption properties of other dielectric loss materials and even for applications in other fields.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Flexible design of gradient multilayer nanofilms coated on carbon nanofibers by atomic layer deposition for enhanced microwave absorption performance

Show Author's information Shichao Zhao1,2Lili Yan1,2Xiaodong Tian2,3Yequn Liu1,4Chaoqiu Chen1Yunqin Li1,2Jiankang Zhang1,2Yan Song3Yong Qin1( )
State Key Laboratory of Coal ConversionInstitute of Coal ChemistryChinese Academy of SciencesTaiyuan030001China
University of Chinese Academy of SciencesBeijing100039China
Key Laboratory of Carbon MaterialsInstitute of Coal ChemistryChinese Academy of SciencesTaiyuan030001China
Analytical Instrumentation CenterInstitute of Coal ChemistryChinese Academy of SciencesTaiyuan030001China

Abstract

Impedance matching is important for achieving high-efficiency microwave absorbers. The high conductivity of dielectric loss materials such as pure metals and carbon nanomaterials generally results in poor absorption owing to the low impedance matching between the absorbers and air. Carbon nanostructures are very promising candidates for high-efficiency absorption because of their attractive features including low density, high surface area, and good stability. Herein, a new strategy is proposed to improve the impedance matching of dielectric loss materials using electrospun carbon nanofibers as an example. The carbon nanofibers are coated with specifically designed gradient multilayer nanofilms with gradually increasing electroconductibility synthesized by doping ZnO with different Al2O3 content (AZO) by atomic layer deposition. The gradient nanofilms are composed of five layers of dielectric films, namely, pure Al2O3, AZO (5:1, the pulse cycle ratio of ZnO to Al2O3), pure ZnO, AZO (10:1), and AZO (20:1). The versatile gradient films serve as intermediate layers to tune the impedance matching between air and the carbon nanofiber surfaces. Therefore, the carbon nanofibers coated with gradient films of rationally selected thicknesses exhibit remarkably enhanced microwave absorption performance, and the optimal reflection loss reaches?58.5 dB at 16.2 GHz with a thickness of only 1.8 mm. This work can help further understand the contribution of impedance matching to microwave absorption. Our strategy is general and can be applied to improve the absorption properties of other dielectric loss materials and even for applications in other fields.

Keywords: atomic layer deposition, microwave absorption, conductive gradient multilayer nanofilms, electrospun carbon nanofiber, dielectric material

References(57)

1

Liu, Q. H.; Cao, Q.; Bi, H.; Liang, C. Y.; Yuan, K. P.; She, W.; Yang, Y. J.; Che, R. C. CoNi@SiO2@TiO2 and CoNi@Air@TiO2 microspheres with strong wideband microwave absorption. Adv. Mater. 2016, 28, 486-490.

2

Wang, G. Z.; Gao, Z.; Wan, G. P.; Lin, S. W.; Yang, P.; Qin, Y. High densities of magnetic nanoparticles supported on graphene fabricated by atomic layer deposition and their use as efficient synergistic microwave absorbers. Nano Res. 2014, 7, 704-716.

3

Zhang, X. M.; Ji, G. B.; Liu, W.; Quan, B.; Liang, X. H.; Shang, C. M.; Cheng, Y.; Du, Y. W. Thermal conversion of an Fe3O4@metal-organic framework: a new method for an efficient Fe-Co/nanoporous carbon microwave absorbing material. Nanoscale 2015, 7, 12932-12942.

4

Liu, J. W.; Che, R. C.; Chen, H. J.; Zhang, F.; Xia, F.; Wu, Q. S.; Wang, M. Microwave absorption enhancement of multifunctional composite microspheres with spinel Fe3O4 cores and anatase TiO2 shells. Small 2012, 8, 1214-1221.

5

Li, W.; Guler, U.; Kinsey, N.; Naik, G. V.; Boltasseva, A.; Guan, J. G.; Shalaev, V. M.; Kildishev, A. V. Refractory plasmonics with titanium nitride: Broadband metamaterial absorber. Adv. Mater. 2014, 26, 7959-7965.

6

Cho, J. S.; Hong, Y. J.; Kang, Y. C. Design and synthesis of bubble-nanorod-structured Fe2O3-carbon nanofibers as advanced anode material for Li-ion batteries. ACS nano 2015, 9, 4026-4035.

7

Zhang, B.; Yu, Y.; Huang, Z. D.; He, Y. B.; Jang, D.; Yoon, W. S.; Mai, Y. W.; Kang, F. Y.; Kim, J. K. Exceptional electrochemical performance of freestanding electrospun carbon nanofiber anodes containing ultrafine SnOx particles. Energy Environ. Sci. 2012, 5, 9895-9902.

8

Kim, C.; Yang, K. S.; Kojima, M.; Yoshida, K.; Kim, Y. J.; Kim, Y. A.; Endo, M. Fabrication of electrospinning-derived carbon nanofiber webs for the anode material of lithium-ion secondary batteries. Adv. Funct. Mater. 2006, 16, 2393-2397.

9

Zhang, Y.; Huang, Y.; Zhang, T. F.; Chang, H. C.; Xiao, P. S.; Chen, H. H.; Huang, Z. Y.; Chen, Y. S. Broadband and tunable high-performance microwave absorption of an ultralight and highly compressible graphene foam. Adv. Mater. 2015, 27, 2049-2053.

10

Wang, L.; Huang, Y.; Sun, X.; Huang, H. J.; Liu, P. B.; Zong, M.; Wang, Y. Synthesis and microwave absorption enhancement of graphene@Fe3O4@SiO2@NiO nanosheet hierarchical structures. Nanoscale 2014, 6, 3157-3164.

11

Shahzad, F.; Alhabeb, M.; Hatter, C. B.; Anasobi, B.; Hong, S. M.; Koo, C. M.; Gogotsi, Y. Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 2016, 353, 1137-1140.

12

Sun, G. B.; Dong, B. X.; Cao, M. H.; Wei, B. Q.; Hu, C. W. Hierarchical dendrite-like magnetic materials of Fe3O4, γ-Fe2O3, and Fe with high performance of microwave absorption. Chem. Mater. 2011, 23, 1587-1593.

13

Liu, J.; Cao, W. Q.; Jin, H. B.; Yuan, J.; Zhang, D. Q.; Cao, M. S. Enhanced permittivity and multi-region microwave absorption of nanoneedle-like ZnO in the X-band at elevated temperature. J. Mater. Chem. C 2015, 3, 4670-4677.

14

Wang, S.; Xiao, N.; Zhou, Y.; Ling, Z.; Li, M. Y.; Qiu, J. S. Lightweight carbon foam from coal liquefaction residue with broad-band microwave absorbing capability. Carbon 2016, 105, 224-226.

15

Lee, I.; Hammond, P. T.; Rubner, M. F. Selective electroless nickel plating of particle arrays on polyelectrolyte multilayers. Chem. Mater. 2003, 15, 4583-4589.

16

Knutsson, A.; Johansson, M. P.; Persson, P. O. Å.; Hultman, L.; Odén, M. Thermal decomposition products in arc evaporated TiAlN/TiN multilayers. Appl. Phys. Lett. 2008, 93, 143110.

17

Wang, Y. M.; Luo, Z.; Hong, R. Y. Microstructure and microwave absorption properties of Fe3O4/dextran/SnO2 multilayer microspheres. Mater. Lett. 2011, 65, 3241-3244.

18

Ritala, M.; Kukli, K.; Rahtu, A.; Räisänen, P. I.; Leskelä, M.; Sajavaara, T.; Keinonen, J. Atomic layer deposition of oxide thin films with metal alkoxides as oxygen sources. Science 2000, 288, 319-321.

19

George, S. M. Atomic layer deposition: An overview. Chem. Rev. 2009, 110, 111-131.

20

Guan, C.; Wang, X. H.; Zhang, Q.; Fan, Z. X.; Zhang, H.; Fan, H. J. Highly stable and reversible lithium storage in SnO2 nanowires surface coated with a uniform hollow shell by atomic layer deposition. Nano Lett. 2014, 14, 4852-4858.

21

Peng, X.; Sun, X. Y.; Spagnola, J. C.; Hyde, G. K.; Spontak, R. J.; Parsons, G. N. Atomic layer deposition on electrospun polymer fibers as a direct route to Al2O3 microtubes with precise wall thickness control. Nano Lett. 2007, 7, 719-722.

22

Ge, H. B.; Zhang, B.; Gu, X. M.; Liang, H. J.; Yang, H. M.; Gao, Z.; Wang, J. G.; Qin, Y. A tandem catalyst with multiple metal oxide interfaces produced by atomic layer deposition. Angew. Chem., Int. Ed. 2016, 55, 7081-7085.

23

Zhang, B.; Chen, Y.; Li, J. W.; Pippel, E.; Yang, H. M.; Gao, Z.; Qin, Y. High efficiency Cu-ZnO hydrogenation catalyst: the tailoring of Cu-ZnO interface sites by molecular layer deposition. ACS Catal. 2015, 5, 5567-5573.

24

Bachmann, J.; Jing, J.; Knez, M.; Barth, S.; Shen, H.; Mathur, S.; Gösele, U.; Nielsch, K. Ordered iron oxide nanotube arrays of controlled geometry and tunable magnetism by atomic layer deposition. J. Am. Chem. Soc. 2007, 129, 9554-9555.

25

Kim, G. M.; Lee, S. M.; Michler, G. H.; Roggendorf, H.; Gösele, U.; Knez, M. Nanostructured pure anatase titania tubes replicated from electrospun polymer fiber templates by atomic layer deposition. Chem. Mater. 2008, 20, 3085-3091.

26

Kayaci, F.; Ozgit-Akgun, C.; Donmez, I.; Biyikli, N.; Uyar, T. Polymer-inorganic core-shell nanofibers by electrospinning and atomic layer deposition: Flexible nylon-ZnO core-shell nanofiber mats and their photocatalytic activity. ACS Appl. Mater. Interfaces 2012, 4, 6185-6194.

27

Wang, G. Z.; Gao, Z.; Tang, S. W.; Chen, C. Q.; Duan, F. F.; Zhao, S. C.; Lin, S. W.; Feng, Y. H.; Zhou, L.; Qin, Y. Microwave absorption properties of carbon nanocoils coated with highly controlled magnetic materials by atomic layer deposition. ACS Nano 2012, 6, 11009-11017.

28

Zhao, S. C.; Gao, Z.; Chen, C. Q.; Wang, G. Z.; Zhang, B.; Chen, Y.; Zhang, J.; Li, X.; Qin, Y. Alternate nonmagnetic and magnetic multilayer nanofilms deposited on carbon nanocoils by atomic layer deposition to tune microwave absorption property. Carbon 2016, 98, 196-203.

29

Li, Y. N.; Zhao, Y.; Lu, X. Y.; Zhu, Y.; Jiang, L. Self-healing superhydrophobic polyvinylidene fluoride/Fe3O4@polypyrrole fiber with core-sheath structures for superior microwave absorption. Nano Res. 2016, 9, 2034-2045.

30

Tian, X. D.; Zhao, N.; Song, Y.; Wang, K.; Xu, D. F.; Li, X.; Guo, Q. G.; Liu, L. Synthesis of nitrogen-doped electrospun carbon nanofibers with superior performance as efficient supercapacitor electrodes in alkaline solution. Electrochim. Acta 2015, 185, 40-51.

31

Liu, Y. Q.; He, L. L.; Lu, X. F.; Xiao, P. Transmission electron microscopy study of the microstructure of unidirectional C/C composites fabricated by catalytic chemical vapor infiltration. Carbon 2013, 51, 381-389.

32

Zhou, G. H.; Liu, Y. Q.; He, L. L.; Guo, Q. G.; Ye, H. Q. Microstructure difference between core and skin of T700 carbon fibers in heat-treated carbon/carbon composites. Carbon 2011, 49, 2883-2892.

33

Banerjee, P.; Lee, W. J.; Bae, K. R.; Lee, S. B.; Rubloff, G. W. Structural, electrical, and optical properties of atomic layer deposition Al-doped ZnO films. J. Appl. Phys. 2010, 108, 043504.

34

Lee, D. J.; Kim, H. M.; Kwon, J. Y.; Choi, H.; Kim, S. H.; Kim, K. B. Structural and electrical properties of atomic layer deposited Al-doped ZnO films. Adv. Funct. Mater. 2011, 21, 448-455.

35

Nayak, P. K.; Wang, Z. H.; Alshareef, H. N. Indium-free fully transparent electronics deposited entirely by atomic layer deposition. Adv. Mater. 2016, 28, 7736-7744.

36

Naito, Y.; Suetake, K. Application of ferrite to electromagnetic wave absorber and its characteristics. IEEE Trans. Microw. Theory Tech. 1971, 19, 65-72.

37

Xu, J. J.; Liu, J. W.; Che, R. C.; Liang, C. Y.; Cao, M. S.; Li, Y.; Liu, Z. W. Polarization enhancement of microwave absorption by increasing aspect ratio of ellipsoidal nanorattles with Fe3O4 cores and hierarchical CuSiO3 shells. Nanoscale 2014, 6, 5782-5790.

38

Yang, Z. H.; Lv, H. L.; Wu, R. B. Rational construction of graphene oxide with MOF-derived porous NiFe@C nanocubes for high-performance microwave attenuation. Nano Res. 2016, 9, 3671-3682.

39

Che, R. C.; Peng, L. M.; Duan, X. F.; Chen, Q.; Liang, X. L. Microwave absorption enhancement and complex permittivity and permeability of Fe encapsulated within carbon nanotubes. Adv. Mater. 2004, 16, 401-405.

40

Weston, V. Theory of absorbers in scattering. IEEE Trans. Antenn. Propag. 1963, 11, 578-584.

41

Sun, H.; Che, R. C.; You, X.; Jiang, Y. S.; Yang, Z. B.; Deng, J.; Qiu, L. B.; Peng, H. S. Cross-stacking aligned carbon-nanotube films to tune microwave absorption frequencies and increase absorption intensities. Adv. Mater. 2014, 26, 8120-8125.

42

Cui, C. K.; Du, Y. C.; Li, T. H.; Zheng, X. Y.; Wang, X. H.; Han, X. J.; Xu, P. Synthesis of electromagnetic functionalized Fe3O4 microspheres/polyaniline composites by two-step oxidative polymerization. J. Phys. Chem. B 2012, 116, 9523-9531.

43

Lv, H. L.; Liang, X. H.; Ji, G. B.; Zhang, H. Q.; Du, Y. W. Porous three-dimensional flower-like Co/CoO and its excellent electromagnetic absorption properties. ACS Appl. Mater. Interfaces 2015, 7, 9776-9783.

44

Lu, M. M.; Cao, M. S.; Chen, Y. H.; Cao, W. Q.; Liu, J.; Shi, H. L.; Zhang, D. Q.; Wang, W. Z.; Yuan, J. Multiscale assembly of grape-like ferroferric oxide and carbon nanotubes: A smart absorber prototype varying temperature to tune intensities. ACS Appl. Mater. Interfaces 2015, 7, 19408-19415.

45

Pan, H. X.; Yin, X. W.; Xue, J. M.; Cheng, L. F; Zhang, L. T. In-situ synthesis of hierarchically porous and polycrystalline carbon nanowires with excellent microwave absorption performance. Carbon 2016, 107, 36-45.

46

Chen, Z. P.; Xu, C.; Ma, C. Q.; Ren, W. C.; Cheng, H. M. Lightweight and flexible graphene foam composites for high-performance electromagnetic interference shielding. Adv. Mater. 2013, 25, 1296-1300.

47

Yan, D. X.; Pang, H.; Li, B.; Vajtai, R.; Xu, L.; Ren, P. G.; Wang, J. H.; Li, Z. M. Structured reduced graphene oxide/polymer composites for ultra-efficient electromagnetic interference shielding. Adv. Funct. Mater. 2015, 25, 559-566.

48

Xia, T.; Zhang, C.; Oyler, N. A.; Chen, X. B. Hydrogenated TiO2 nanocrystals: a novel microwave absorbing material. Adv. Mater. 2013, 25, 6905-6910.

49

Wang, Y.; Du, Y. C.; Qiang, R.; Tian, C. H.; Xu, P.; Han, X. J. Interfacially engineered sandwich-like rGO/carbon microspheres/rGO composite as an efficient and durable microwave absorber. Adv. Mater. Interfaces 2016, 3, 1500684.

50

Fang, J. Y.; Liu, T.; Chen, Z.; Wang Y.; Wei, W.; Yue, X. G.; Jiang, Z. H. A wormhole-like porous carbon/magnetic particles composite as an efficient broadband electromagnetic wave absorber. Nanoscale 2016, 8, 8899-8909.

51

Yan, L. L.; Liu, J.; Zhao, S. C.; Zhang, B.; Gao, Z.; Ge, H. B.; Chen, Y.; Cao, M. S.; Qin, Y. Coaxial multi-interface hollow Ni-Al2O3-ZnO nanowires tailored by atomic layer deposition for selective-frequency absorptions. Nano Res. 2017, 10, 1595-1607.

52

Wen, B.; Cao, M. S.; Hou, Z. L.; Song, W. L.; Zhang, L.; Lu, M. M.; Jin, H. B.; Fang, X. Y.; Wang, W. Z.; Yuan, J. Temperature dependent microwave attenuation behavior for carbon-nanotube/silica composites. Carbon 2013, 65, 124-139.

53

Li, G. M.; Wang, L. C.; Li, W. X.; Ding, R. M.; Xu, Y. CoFe2O4 and/or Co3Fe7 loaded porous activated carbon balls as a lightweight microwave absorbent. Phys. Chem. Chem. Phys. 2014, 16, 12385-12392.

54

Bowler, N. Designing dielectric loss at microwave frequencies using multi-layered filler particles in a composite. IEEE Trans. Dielectr. Electr. Insul. 2006, 13, 703-711.

55

Wen, B.; Cao, M. S.; Lu, M. M.; Cao, W. Q.; Shi, H. L.; Liu, J.; Wang, X. X.; Jin, H. B.; Fang, W. Y.; Wang, W. Z. et al. Reduced graphene oxides: Light-weight and high-efficiency electromagnetic interference shielding at elevated temperatures. Adv. Mater. 2014, 26, 3484-3489.

56

Pan, Y. F.; Wang, G. S.; Liu, L.; Guo, L.; Yu, S. H. Binary synergistic enhancement of dielectric and microwave absorption properties: A composite of arm symmetrical PbS dendrites and polyvinylidene fluoride. Nano Res. 2017, 10, 284-294.

57

Yang, H. J.; Cao, W. Q.; Zhang, D. Q.; Su, T. J.; Shi, H. L.; Wang, W. Z.; Yuan, J.; Cao, M. S. NiO hierarchical nanorings on SiC: enhancing relaxation to tune microwave absorption at elevated temperature. ACS Appl. Mater. Interfaces 2015, 7, 7073-7077.

File
nr-11-1-530_ESM.pdf (2.6 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 02 February 2017
Revised: 01 May 2017
Accepted: 04 May 2017
Published: 18 July 2017
Issue date: January 2018

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany 2017

Acknowledgements

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 21376256 and 51602322), the Youth Innovation Promotion Association of the Chinese Academy of Sciences (No. 2015139), the Research Project of Shanxi Scholarship Council (No. 2013-152), the Hundred Talent Program of the Chinese Academy of Sciences, and the Hundred Talent Program of Shanxi Province.

Return