Journal Home > Volume 11 , Issue 1

ZnO has received tremendous attention for applications in photoelectrochemical water splitting, photocatalysis, and photovoltaic devices. However, the photoelectric conversion efficiency of ZnO is limited by the rapid recombination of photoexcited electron–hole pairs and the wide band gap, which allows only a small fraction of the solar spectrum to be absorbed. Recently, substantial research efforts have aimed to increase the photoelectric conversion efficiency across the entire ultraviolet–visible (UV–vis) spectrum by coupling semiconductors such as ZnO with noble metal nanoparticles (NPs). In this study, we compare the performance of a pure ZnO film and ZnO/Ag nanostructured films as photoelectrodes.We show that under broad-spectrum UV–vis illumination, the photocurrent generated in the ZnO/Ag three-dimensional (3D) nanostructured films increases 3.75 times relative to the photocurrent generated in the pure ZnO films. We attribute the high photocurrent to the electric-field enhancement associated with the localized surface plasmon resonance of the Ag NPs, which are present at a high density in the 3D nanostructured films, and to the creation of photoexcited hot electrons in Ag that are transferred to ZnO, promoting electron–hole pair separation. We propose a mechanism to explain the observed enhancement of the photoelectric conversion efficiency.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Improved plasmon-assisted photoelectric conversion efficiency across entire ultraviolet–visible region based on antenna-on zinc oxide/silver three-dimensional nanostructured films

Show Author's information Lijuan Yan1,§Yang Liu2,§Yaning Yan1Lanfang Wang1Juan Han1Yanan Wang1Guowei Zhou1Mark T. Swihart2Xiaohong Xu1,3( )
School of Chemistry and Materials Science of Shanxi Normal University & Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of EducationLinfen041004China
Department of Chemical and Biological EngineeringUniversity at Buffalo (SUNY), BuffaloNew York14260-4200USA
Research Institute of Materials Science of Shanxi Normal UniversityLinfen041004China

§ Lijuan Yan and Yang Liu contributed equally to this work.

Abstract

ZnO has received tremendous attention for applications in photoelectrochemical water splitting, photocatalysis, and photovoltaic devices. However, the photoelectric conversion efficiency of ZnO is limited by the rapid recombination of photoexcited electron–hole pairs and the wide band gap, which allows only a small fraction of the solar spectrum to be absorbed. Recently, substantial research efforts have aimed to increase the photoelectric conversion efficiency across the entire ultraviolet–visible (UV–vis) spectrum by coupling semiconductors such as ZnO with noble metal nanoparticles (NPs). In this study, we compare the performance of a pure ZnO film and ZnO/Ag nanostructured films as photoelectrodes.We show that under broad-spectrum UV–vis illumination, the photocurrent generated in the ZnO/Ag three-dimensional (3D) nanostructured films increases 3.75 times relative to the photocurrent generated in the pure ZnO films. We attribute the high photocurrent to the electric-field enhancement associated with the localized surface plasmon resonance of the Ag NPs, which are present at a high density in the 3D nanostructured films, and to the creation of photoexcited hot electrons in Ag that are transferred to ZnO, promoting electron–hole pair separation. We propose a mechanism to explain the observed enhancement of the photoelectric conversion efficiency.

Keywords: photoelectric conversion efficiency, localized surface plasmon resonance, ZnO/Ag nanostructured films, Ag nanoparticles

References(43)

1

Zou, Z. G.; Ye, J. H.; Sayama, K.; Arakawa, H. Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst. Nature 2001, 414, 625-627.

2

Ren, S. T.; Wang, B. Y.; Zhang, H.; Ding, P.; Wang, Q. Sandwiched ZnO@Au@Cu2O nanorod films as efficient visible-light-driven plasmonic photocatalysts. ACS Appl. Mater. Interfaces 2015, 7, 4066-4074.

3

Ghosh, A.; Guha, P.; Samantara, A. K.; Jena, B. K.; Bar, R.; Ray, S.; Satyam, P. V. Simple growth of faceted Au-ZnO hetero-nanostructures on silicon substrates (nanowires and triangular nanoflakes): A shape and defect driven enhanced photocatalytic performance under visible light. ACS Appl. Mater. Interfaces 2015, 7, 9486-9496.

4

Geng, W.; Wu, L.; Li, J. H.; Choi, J.; Jeong, Y.; Choi, S. Y.; Park, J. B.; Ryu, M. K.; Lee, K. V-shaped tin oxide nanostructures featuring a broad photocurrent signal: An effective visible-light-driven photocatalyst. Small 2006, 2, 1436-1439.

5

Liu, Y. C.; Gu, Y. S.; Yan, X. Q.; Kang, Z.; Lu, S. N.; Sun, Y. H.; Zhang, Y. Design of sandwich-structured ZnO/ZnS/Au photoanode for enhanced efficiency of photoelectrochemical water splitting. Nano Res. 2015, 8, 2891-2900.

6

Pu, Y. C.; Wang, G. M.; Chang, K. D.; Ling, Y. C.; Lin, Y. K.; Fitzmorris, B. C.; Liu, C. M.; Lu, X. H.; Tong, Y. X.; Zhang, J. Z. et al. Au nanostructure-decorated TiO2 nanowires exhibiting photoactivity across entire UV-visible region for photoelectrochemical water splitting. Nano Lett. 2013, 13, 3817-3823.

7

García de Arquer, F. P.; Mihi, A.; Kufer, D.; Konstantatos, G. Photoelectric energy conversion of plasmon-generated hot carriers in metal-insulator-semiconductor structures. ACS Nano 2013, 7, 3581-3588.

8

Zhao, B.; Jiang, M. M.; Zhao, D. X.; Li, Y.; Wang, F.; Shen, D. Z. Electrically driven plasmon mediated energy transfer between ZnO microwires and Au nanoparticles. Nanoscale 2015, 7, 1081-1089.

9

Chen, H. J.; Liu G.; Wang, L. Z. Switched photocurrent direction in Au/TiO2 bilayer thin films. Sci. Rep. 2015, 5, 10852.

10

Ko, S. H.; Lee, D.; Kang, H. W.; Nam, K. H.; Yeo, J. Y.; Hong, S. J.; Grigoropoulos, C. P.; Sung, H. J. Nanoforest of hydrothermally grown hierarchical ZnO nanowires for a high efficiency dye-sensitized solar cell. Nano Lett. 2011, 11, 666-671.

11

Demel, J.; Pleštil, J.; Bezdička, P.; Janda, P.; Klementová, M.; Lang, K. Few-layer ZnO nanosheets: preparation, properties, and films with exposed {001} facets. J. Phys. Chem. C 2011, 115, 24702-24706.

12

Wang, J. P.; Wang, Z. Y.; Huang, B. B.; Ma, Y. D.; Liu, Y. Y.; Qin, X. Y.; Zhang, X. Y.; Dai, Y. Oxygen vacancy induced band-gap narrowing and enhanced visible light photocatalytic activity of ZnO. ACS Appl. Mater. Interfaces 2012, 4, 4024-4030.

13

Zhang, Y.; Yan, X. Q.; Yang, Y.; Huang, Y. H.; Liao, Q. L.; Qi, J. J. Scanning probe study on the piezotronic effect in ZnO nanomaterials and nanodevices. Adv. Mater. 2012, 24, 4647-4655.

14

Zheng, Y. H.; Chen, C. Q.; Zhan, Y. Y.; Lin, X. Y.; Zheng, Q.; Wei, K. M.; Zhu, J. F. Photocatalytic activity of Ag/ZnO heterostructure nanocatalyst: Correlation between structure and property. J. Phys. Chem. C, 2008, 112, 10773-10777.

15

Wang, H.; Bai, Y. S.; Zhang, H.; Zhang, Z. H.; Li, J. H.; Guo, L. CdS quantum dots-sensitized TiO2 nanorod array on transparent conductive glass photoelectrodes. J. Phys. Chem. C 2010, 114, 16451-16455.

16

Chen, X. B.; Shen, S. H.; Guo, L. J.; Mao, S. S. Semiconductor-based photocatalytic hydrogen generation. Chem. Rev. 2010, 110, 6503-6570.

17

Qiu, Y. C.; Yan, K. Y.; Deng, H.; Yang, S. H. Secondary branching and nitrogen doping of ZnO nanotetrapods: building a highly active network for photoelectrochemical water splitting. Nano Lett. 2012, 12, 407-413.

18

Wang, F.; Seo, J. H.; Li, Z. D.; Kvit, A. V.; Ma, Z. Q.; Wang, X. D. Cl-doped ZnO nanowires with metallic conductivity and their application for high-performance photoelectrochemical electrodes. ACS Appl. Mater. Interfaces 2014, 6, 1288-1293.

19

Liu, G.; Wang, L. Z.; Yang, H. G.; Cheng, H. M.; Lu, G. Q. Titania-based photocatalysts-crystal growth, doping and heterostructuring. J. Mater. Chem. 2010, 20, 831-843.

20

Vayssieres, L.; Keis, K.; Hagfeldt, A.; Lindquist, S. E. Three-dimensional array of highly oriented crystalline ZnO microtubes. Chem. Mater. 2001, 13, 4395-4398.

21

Monson, T. C.; Lloyd, M. T.; Olson, D. C.; Lee, Y. J.; Hsu, J. W. P. Photocurrent enhancement in polythiophene- and alkanethiol-modified ZnO solar cells. Adv. Mater. 2008, 20, 4755-4759.

22

Ruankham, P.; Macaraig, L.; Sagawa, T.; Nakazumi, H.; Yoshikawa, S. Surface modification of ZnO nanorods with small organic molecular dyes for polymer-inorganic hybrid solar cells. J. Phys. Chem. C 2011, 115, 23809-23816.

23

Kargar, A.; Jing, Y.; Kim, S. J.; Riley, C. T.; Pan, X. Q.; Wang, D. L. ZnO/CuO heterojunction branched nanowires for photoelectrochemical hydrogen generation. ACS Nano 2013, 7, 11112-11120.

24

Gao, J. B.; Luther, J. M.; Semonin, O. E.; Ellingson, R. J.; Nozik, A. J.; Beard, M. C. Quantum dot size dependent J-V characteristics in heterojunction ZnO/PbS quantum dot solar cells. Nano Lett. 2011, 11, 1002-1008.

25

Clavero, C. Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices. Nat. Photonics 2014, 8, 95-103.

26

Schuller, J. A.; Barnard, E. S.; Cai, W. H.; Jun, Y. C.; White, J. S.; Brongersma, M. L. Plasmonics for extreme light concentration and manipulation. Nat. Mater. 2010, 9, 193-204.

27

Zhou, Z. K.; Peng, X. N.; Yang, Z. J.; Zhang, Z. S.; Li, M.; Su, X. R.; Zhang, Q.; Shan, X. Y.; Wang, Q. Q.; Zhang, Z. Y. Tuning gold nanorod-nanoparticle hybrids into plasmonic Fano resonance for dramatically enhanced light emission and transmission. Nano Lett. 2011, 11, 49-55.

28

Wang, Y. L.; Nan, F.; Liu, X. L.; Zhou, L.; Peng, X. N.; Zhou, Z. K.; Yu, Y.; Hao, Z. H.; Wu, Y.; Zhang, W. et al. Plasmon-enhanced light harvesting of chlorophylls on near-percolating silver films via one-photon anti-stokes upconversion. Sci. Rep. 2013, 3, 1861.

29

Zhang, X.; Liu, Y.; Kang, Z. H. 3D branched ZnO nanowire arrays decorated with plasmonic Au nanoparticles for high-performance photoelectrochemical water splitting. ACS Appl. Mater. Interfaces 2014, 6, 4480-4489.

30

Zhang, Z. F.; Li, Y.; Li, K. F.; Chen, K.; Yang, Y. Z.; Liu, X. G.; Jia, H. S.; Xu, B. S. Growth and characterization of flower-like Ag/ZnO heterostructure composites with enhanced photocatalytic performance. J. Mater. Sci. 2014, 49, 2347-2354.

31

Cheng, C. W.; Yan, B.; Wong, S. M.; Li, X. L.; Zhou, W. W.; Yu, T.; Shen, Z. X.; Yu, H. Y.; Fan, H. J. Fabrication and SERS performance of silver-nanoparticle-decorated Si/ZnO nanotrees in ordered arrays. ACS Appl. Mater. Interfaces 2010, 2, 1824-1828.

32

He, X.; Yue, C.; Zang, Y. S.; Yin, J.; Sun, S. B.; Li, J.; Kang, J. Y. Multi-hot spot configuration on urchin-like Ag nanoparticle/ZnO hollow nanosphere arrays for highly sensitive SERS. J. Mater. Chem. A. 2013, 1, 15010-15015.

33

Xie, Y. L.; Yang, S. K.; Mao, Z. M.; Li, P.; Zhao, C. L.; Cohick, Z.; Huang, P. H.; Huang, T. J. In situ fabrication of 3D Ag@ZnO nanostructures for micro fluidic surface-enhanced Raman scattering systems. ACS Nano. 2014, 8, 12175-12184.

34

Huang, J.; Chen, F.; Zhang, Q.; Zhan, Y. H.; Ma, D. Y.; Xu, K. W.; Zhao, Y. X. 3D silver nanoparticles decorated zinc oxide/silicon heterostructured nanomace arrays as high-performance surface-enhanced Raman scattering substrates. ACS Appl. Mater. Interfaces 2015, 7, 5725-5735.

35

Zhang, D. Y.; Wang, P. P.; Murakami, R. I.; Song, X. P. Effect of an interface charge density wave on surface plasmon resonance in ZnO/Ag/ZnO thin films. Appl. Phys. Lett. 2010, 96, 233114.

36

Zhang, K.; Wang, H.; Gan, Z. K.; Zhou, P. Q.; Mei, C. L.; Huang X.; Xia Y. X. Localized surface plasmon resonances dominated giant lateral photovoltaic effect observed in ZnO/Ag/Si nanostructure. Sci. Rep. 2016, 6, 22906.

37

Fang, Y. R.; Jiao, Y.; Xiong, K. L.; Ogier, R.; Yang, Z. J.; Gao, S. W.; Dahlin, A. B.; Käll, M. Plasmon enhanced internal photoemission in antenna-spacer-mirror based Au/TiO2 nanostructures. Nano Lett. 2015, 15, 4059-4065.

38

Zhan, Z. Y.; An, J. N.; Zhang, H. C.; Hansen, R. V.; Zheng, L. X. Three-dimensional plasmonic photoanodes based on Au-embedded TiO2 structures for enhanced visible-light water splitting. ACS Appl. Mater. Interfaces 2014, 6, 1139-1144.

39

Mubeen, S.; Hernandez-Sosa, G.; Moses, D.; Lee, J.; Moskovits M. Plasmonic photosensitization of a wide band gap semiconductor: converting plasmons to charge carriers. Nano Lett. 2011, 11, 5548-5552.

40

Nishijima, Y.; Ueno, K.; Yokota, Y.; Murakoshi, K.; Misawa H. Plasmon-assisted photocurrent generation from visible to near-infrared wavelength using a Au-nanorods/TiO2 electrode. J. Phys. Chem. Lett. 2010, 1, 2031-2036.

41

Kang, Z.; Yan, X. Q.; Wang, Y. F.; Zhao, Y. G.; Bai, Z. M.; Liu, Y. C.; Zhao, K.; Cao, S. Y.; Zhang, Y. Self-powered photoelectrochemical biosensing platform based on Au NPs@ZnO nanorods array. Nano Res. 2016, 9, 344-352.

42

Wang, G. M.; Ling, Y. C.; Lu, X. H.; Zhai, T.; Qian, F.; Tong, Y. X.; Li, Y. A mechanistic study into the catalytic effect of Ni(OH)2 on hematite for photoelectrochemical water oxidation. Nanoscale 2013, 5, 4129-4133.

43

Zhang, Z. H.; Zhang, L. B.; Hedhili, M. N.; Zhang, H. N.; Wang, P. Plasmonic gold nanocrystals coupled with photonic crystal seamlessly on TiO2 nanotube photoelectrodes for efficient visible light photoelectrochemical water splitting. Nano Lett. 2013, 13, 14-20.

File
nr-11-1-520_ESM.pdf (1.1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 05 December 2016
Revised: 01 May 2017
Accepted: 04 May 2017
Published: 27 June 2017
Issue date: January 2018

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany 2017

Acknowledgements

Acknowledgements

The work was supported by the National Natural Science Foundation of China (NSFC) (Nos. 61434002 and 11611540333), the Special Funds of Shanxi Scholars Program, the National key Research and Development Plan of China, the Ministry of Education of China (No. IRT1156), and the Sanjin Scholar Project.

Return