Journal Home > Volume 10 , Issue 12

Porous carbon materials are widely used in particulate forms for energy applications such as fuel cells, batteries, and (super) capacitors. To better hold the particles together, polymeric additives are utilized as binders, which not only increase the weight and volume of the devices, but also cause adverse side effects. We developed a wood-derived, free-standing porous carbon electrode and successfully applied it as a cathode in Li-O2 batteries. The spontaneously formed hierarchical porous structure exhibits good performance in facilitating the mass transport and hosting the discharge products of Li2O2. Heteroatom (N) doping further improves the catalytic activity of the carbon cathode with lower overpotential and higher capacity. Overall, the Li-O2 battery based on the new carbon cathode affords a stable energy efficiency of 65% and can be operated for 20 cycles at a discharge depth of 70%. The wood-derived free-standing carbon represents a new, unique structure for energy applications.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Free-standing porous carbon electrodes derived from wood for high-performance Li-O2 battery applications

Show Author's information Jingru Luo1,§Xiahui Yao1,§Lei Yang2,§Yang Han2Liao Chen2Xiumei Geng2Vivek Vattipalli3Qi Dong1Wei Fan3Dunwei Wang1( )Hongli Zhu2( )
Department of ChemistryMerkert Chemistry CenterBoston College2609 Beacon St.Chestnut HillMA02467USA
Department of Mechanical and Industrial EngineeringNortheastern University360 Huntington AvenueBostonMA02115USA
Chemical Engineering DepartmentUniversity of Massachusetts Amherst686 N. Pleasant StreetAmherstMA01003USA

§ Jingru Luo, Xiahui Yao and Lei Yang contributed equally to this work

Abstract

Porous carbon materials are widely used in particulate forms for energy applications such as fuel cells, batteries, and (super) capacitors. To better hold the particles together, polymeric additives are utilized as binders, which not only increase the weight and volume of the devices, but also cause adverse side effects. We developed a wood-derived, free-standing porous carbon electrode and successfully applied it as a cathode in Li-O2 batteries. The spontaneously formed hierarchical porous structure exhibits good performance in facilitating the mass transport and hosting the discharge products of Li2O2. Heteroatom (N) doping further improves the catalytic activity of the carbon cathode with lower overpotential and higher capacity. Overall, the Li-O2 battery based on the new carbon cathode affords a stable energy efficiency of 65% and can be operated for 20 cycles at a discharge depth of 70%. The wood-derived free-standing carbon represents a new, unique structure for energy applications.

Keywords: free-standing electrode, bio-inspired, porous carbon, lithium oxygen batteries

References(41)

1

Fang, B. Z.; Kim, J. H.; Kim, M.; Yu, J. S. Ordered hierarchical nanostructured carbon as a highly efficient cathode catalyst support in proton exchange membrane fuel cell. Chem. Mater. 2009, 21, 789–796.

2

Kjeang, E.; Michel, R.; Harrington, D. A.; Djilali, N.; Sinton, D. A microfluidic fuel cell with flow-through porous electrodes. J. Am. Chem. Soc. 2008, 130, 4000–4006.

3

Long, J. W.; Dunn, B.; Rolison, D. R.; White, H. S. Threedimensional battery architectures. Chem. Rev. 2004, 104, 4463–4492.

4

Ogasawara, T.; Débart, A.; Holzapfel, M.; Novák, P.; Bruce, P. G. Rechargeable Li2O2 electrode for lithium batteries. J. Am. Chem. Soc. 2006, 128, 1390–1393.

5

Wang, D. W.; Li, F.; Liu, M.; Lu, G. Q.; Cheng, H. M. 3D aperiodic hierarchical porous graphitic carbon material for high-rate electrochemical capacitive energy storage. Angew. Chem., Int. Ed. 2008, 47, 373–376.

6

Zhai, Y. P.; Dou, Y. Q.; Zhao, D. Y.; Fulvio, P. F.; Mayes, R. T.; Dai, S. Carbon materials for chemical capacitive energy storage. Adv. Mater. 2011, 23, 4828–4850.

7

Pandolfo, A. G.; Hollenkamp, A. F. Carbon properties and their role in supercapacitors. J. Power Sources 2006, 157, 11–27.

8

Dutta, S.; Bhaumik, A.; Wu, K. C. W. Hierarchically porous carbon derived from polymers and biomass: Effect of interconnected pores on energy applications. Energy Environ. Sci. 2014, 7, 3574–3592.

9

Long, C. M.; Nascarella, M. A.; Valberg, P. A. Carbon black vs. black carbon and other airborne materials containing elemental carbon: Physical and chemical distinctions. Environ. Pollut. 2013, 181, 271–286.

10

Liu, G.; Zheng, H.; Song, X.; Battaglia, V. S. Particles and polymer binder interaction: A controlling factor in lithium-ion electrode performance. J. Electrochem. Soc. 2012, 159, A214–A221.

11

Ha, D. H.; Islam, M. A.; Robinson, R. D. Binder-free and carbon-free nanoparticle batteries: A method for nanoparticle electrodes without polymeric binders or carbon black. Nano Lett. 2012, 12, 5122–5130.

12

Chen, Z. H.; Li, H.; Tian, R.; Duan, H. N.; Guo, Y. P.; Chen, Y. J.; Zhou, J.; Zhang, C. M.; Dugnani, R.; Liu, H. Z. Three dimensional graphene aerogels as binder-less, freestanding, elastic and high-performance electrodes for lithium-ion batteries. Sci. Rep. 2016, 6, 27365.

13

Yao, X. H.; Dong, Q.; Cheng, Q. M.; Wang, D. W. Why do lithium–oxygen batteries fail: Parasitic chemical reactions and their synergistic effect. Angew. Chem., Int. Ed. 2016, 55, 11344–11353.

14

Black, R.; Oh, S. H.; Lee, J. H.; Yim, T.; Adams, B.; Nazar, L. F. Screening for superoxide reactivity in Li-O2 batteries: Effect on Li2O2/LiOH crystallization. J. Am. Chem. Soc. 2012, 134, 2902–2905.

15

Amanchukwu, C. V.; Harding, J. R.; Shao-Horn, Y.; Hammond, P. T. Understanding the chemical stability of polymers for lithium–air batteries. Chem. Mater. 2015, 27, 550–561.

16

Etacheri, V.; Sharon, D.; Garsuch, A.; Afri, M.; Frimer, A. A.; Aurbach, D. Hierarchical activated carbon microfiber (ACM) electrodes for rechargeable Li–O2 batteries. J. Mater. Chem. A 2013, 1, 5021–5030.

17

Lacey, M. J.; Jeschull, F.; Edström, K.; Brandell, D. Porosity blocking in highly porous carbon black by PVdF binder and its implications for the Li–S system. J. Phys. Chem. C 2014, 118, 25890–25898.

18

Wang, Z. L.; Xu, D.; Xu, J. J.; Zhang, L. L.; Zhang, X. B. Graphene oxide gel-derived, free-standing, hierarchically porous carbon for high-capacity and high-rate rechargeable Li-O2 batteries. Adv. Funct. Mater. 2012, 22, 3699–3705.

19

Liu, Q. C.; Xu, J. J.; Xu, D.; Zhang, X. B. Flexible lithiumoxygen battery based on a recoverable cathode. Nat. Commun. 2015, 6, 7892.

20

Xu, J. J.; Wang, Z. L.; Xu, D.; Zhang, L. L.; Zhang, X. B. Tailoring deposition and morphology of discharge products towards high-rate and long-life lithium-oxygen batteries. Nat. Commun. 2013, 4, 2438.

21

Byon, H. R.; Gallant, B. M.; Lee, S. W.; Shao-Horn, Y. Role of oxygen functional groups in carbon nanotube/ graphene freestanding electrodes for high performance lithium batteries. Adv. Funct. Mater. 2013, 23, 1037–1045.

22

Yin, Y. B.; Xu, J. J.; Liu, Q. C.; Zhang, X. B. Macroporous interconnected hollow carbon nanofibers inspired by goldentoad eggs toward a binder-free, high-rate, and flexible electrode. Adv. Mater. 2016, 28, 7494–7500.

23

Chang, Z. W.; Xu, J. J.; Liu, Q. C.; Li, L.; Zhang, X. B. Recent progress on stability enhancement for cathode in rechargeable non-aqueous lithium-oxygen battery. Adv. Energy Mater. 2015, 5, 1500633.

24

Liu, T.; Liu, Q. C.; Xu, J. J.; Zhang, X. B. Cable-type water-survivable flexible Li-O2 battery. Small 2016, 12, 3101–3105.

25

Zhu, H. L.; Luo, W.; Ciesielski, P. N.; Fang, Z. Q.; Zhu, J. Y.; Henriksson, G.; Himmel, M. E.; Hu, L. B. Wood-derived materials for green electronics, biological devices, and energy applications. Chem. Rev. 2016, 116, 9305–9374.

26

Zhu, H. L.; Jia, Z.; Chen, Y. C.; Weadock, N.; Wan, J. Y.; Vaaland, O.; Han, X. G.; Li, T.; Hu, L. B. Tin anode for sodium-ion batteries using natural wood fiber as a mechanical buffer and electrolyte reservoir. Nano Lett. 2013, 13, 3093–3100.

27

Byrne, C.; Nagle, D. C. Carbonization of wood for advanced materials applications. Carbon 1997, 35, 259–266.

28

Read, J.; Mutolo, K.; Ervin, M.; Behl, W.; Wolfenstine, J.; Driedger, A.; Foster, D. Oxygen transport properties of organic electrolytes and performance of lithium/oxygen battery. J. Electrochem. Soc. 2003, 150, A1351–A1356.

29

Bruce, P. G.; Freunberger, S. A.; Hardwick, L. J.; Tarascon, J. M. Li-O2 and Li-S batteries with high energy storage. Nat. Mater. 2012, 11, 19–29.

30

Xie, J.; Yao, X. H.; Cheng, Q. M.; Madden, I. P.; Dornath, P.; Chang, C. C.; Fan, W.; Wang, D. W. Three dimensionally ordered mesoporous carbon as a stable, high-performance Li–O2 battery cathode. Angew. Chem., Int. Ed. 2015, 54, 4299–4303.

31

Gong, K. P.; Du, F.; Xia, Z. H.; Durstock, M.; Dai, L. M. Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 2009, 323, 760–764.

32

Guo, D. H.; Shibuya, R.; Akiba, C.; Saji, S.; Kondo, T.; Nakamura, J. Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts. Science 2016, 351, 361–365.

33

Pang, J.; John, V. T.; Loy, D. A.; Yang, Z.; Lu, Y. Hierarchical mesoporous carbon/silica nanocomposites from phenyl-bridged organosilane. Adv. Mater. 2005, 17, 704–707.

34

Lu, Y. C.; Kwabi, D. G.; Yao, K. P. C.; Harding, J. R.; Zhou, J. G.; Zuin, L.; Shao-Horn, Y. The discharge rate capability of rechargeable Li-O2 batteries. Energy Environ. Sci. 2011, 4, 2999–3007.

35

Shevlin, P. B.; McPherson, D. W.; Melius, P. Reaction of atomic carbon with ammonia. The mechanism of formation of amino acid precursors. J. Am. Chem. Soc. 1983, 105, 488–491.

36

Tuinstra, F.; Koenig, J. L. Raman spectrum of graphite. J. Chem. Phys. 1970, 53, 1126–1130.

37

Matter, P. H.; Zhang, L.; Ozkan, U. S. The role of nanostructure in nitrogen-containing carbon catalysts for the oxygen reduction reaction. J. Catal. 2006, 239, 83–96.

38

McCloskey, B. D.; Speidel, A.; Scheffler, R.; Miller, D. C.; Viswanathan, V.; Hummelshøj, J. S.; Nørskov, J. K.; Luntz, A. C. Twin problems of interfacial carbonate formation in nonaqueous Li–O2 batteries. J. Phys. Chem. Lett. 2012, 3, 997-1001.

39

Yin, W.; Grimaud, A.; Lepoivre, F.; Yang, C. Z.; Tarascon, J. M. Chemical vs. electrochemical formation of Li2CO3 as a discharge product in Li-O2/CO2 batteries by controlling the superoxide intermediate. J. Phys. Chem. Lett. 2017, 8, 214–222.

40

Younesi, R.; Hahlin, M.; Björefors, F.; Johansson, P.; Edström, K. Li-O2 battery degradation by lithium peroxide (Li2O2): A model study. Chem. Mater. 2013, 25, 77–84.

41

Xie, J.; Dong, Q.; Madden, I.; Yao, X. H.; Cheng, Q. M.; Dornath, P.; Fan, W.; Wang, D. W. Achieving low overpotential Li–O2 battery operations by Li2O2 decomposition through one-electron processes. Nano Lett. 2015, 15, 8371–8376.

File
nr-10-12-4318_ESM.pdf (2.1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 30 March 2017
Revised: 28 April 2017
Accepted: 01 May 2017
Published: 27 June 2017
Issue date: December 2017

Copyright

© Tsinghua University Press and Springer‐Verlag Berlin Heidelberg 2017

Acknowledgements

Acknowledgements

This work is supported by Boston College. H. Zhu. We acknowledge the Northeastern University Startup and Tier 1 support. XPS was performed at the Center for Nanoscale Systems (CNS), a member of the National Nanotechnology Infrastructure Network (NNIN), which is supported by the National Science Foundation under NSF (No. 1541959). CNS is part of Harvard University. XRD was performed at the MIT Center of Material Science and Engineering.

Return