Journal Home > Volume 11 , Issue 1

Ammonia (NH3) detection at room temperature has attracted considerable attention because of the increasing demand for health monitoring, personal safety protection, and industrial manufacturing. Herein, we report the synthesis of polycrystalline SrGe4O9 nanotubes (NTs) via an electrospinning process. These NTs are a new sensing material for the detection of ammonia at room temperature. The SrGe4O9 NTs exhibited a maximum sensing response of 2.49 for 100 ppm NH3, which was increased to 7.08 by decorating the NTs with Pt nanoparticles. Flexible gas sensors were fabricated, which exhibited comparable performance to the rigid device. Additionally, the flexible devices showed excellent flexibility, mechanical stability, and sensing stability under different bending states, manifesting their potential applications in flexible and wearable electronics.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Fabrication of rigid and flexible SrGe4O9 nanotube-based sensors for room-temperature ammonia detection

Show Author's information Tingting Huang1,2Zheng Lou2Shuai Chen1,2Rui Li1,2Kai Jiang3Di Chen1( )Guozhen Shen2,4( )
College of Physics and Mathematics and Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface ScienceUniversity of Science and Technology BeijingBeijing100083China
State Key Laboratory for Superlattices and MicrostructuresInstitute of SemiconductorsChinese Academy of SciencesBeijing100083China
Institute & Hospital of Hepatobiliary SurgeryKey Laboratory of Digital Hepatobiliary Surgery of Chinese PLAChinese PLA Medical SchoolChinese PLA General HospitalBeijing100853China
College of Materials Science and Opto-Electronic TechnologyUniversity of Chinese Academy of SciencesBeijing100049China

Abstract

Ammonia (NH3) detection at room temperature has attracted considerable attention because of the increasing demand for health monitoring, personal safety protection, and industrial manufacturing. Herein, we report the synthesis of polycrystalline SrGe4O9 nanotubes (NTs) via an electrospinning process. These NTs are a new sensing material for the detection of ammonia at room temperature. The SrGe4O9 NTs exhibited a maximum sensing response of 2.49 for 100 ppm NH3, which was increased to 7.08 by decorating the NTs with Pt nanoparticles. Flexible gas sensors were fabricated, which exhibited comparable performance to the rigid device. Additionally, the flexible devices showed excellent flexibility, mechanical stability, and sensing stability under different bending states, manifesting their potential applications in flexible and wearable electronics.

Keywords: nanotubes, gas sensors, ammonia, flexible electronics

References(38)

1

Kenry; Lim, C. K. Synthesis, optical properties, and chemical-biological sensing applications of one-dimensional inorganic semiconductor nanowires. Prog. Mater. Sci. 2013, 58, 705-748.

2

Shen, G. Z.; Chen, P. C.; Ryu, K.; Zhou, C. W. Devices and chemical sensing applications of metal oxide nanowires. J. Mater. Chem. 2009, 19, 828-839.

3

Miller, D. R.; Akbar S. A.; Morris, P. A. Nanoscale metal oxide-based heterojunctions for gas sensing: A review. Sens. Act. B. Chem. 2014, 204, 250-272.

4

Cagliani, A.; Mackenzie, D. M. A.; Tschammer, L. K.; Pizzocchero, F.; Almdal, K.; Bøggild, P. Large-area nanopatterned graphene for ultrasensitive gas sensing. Nano Res. 2014, 7, 743-754.

5

Yamazoe, N.; Tamaki, J.; Miura, N. Role of heterojunctions in oxide semiconductor gas sensors. Mater. Sci. Eng. B1996, 41, 178-181.

6

Fan, Z. Y.; Ho, J. C.; Takahashi, T.; Yerushalmi, R.; Takei, K.; Ford, A. C.; Chueh, Y. L.; Javey, A. Toward the development of printable nanowire electronics and sensors. Adv. Mater. 2009, 21, 3730-3743.

7

Chen, P. C.; Shen, G. Z.; Zhou, C. W. Chemical sensors and electronic noses based on 1-D metal oxide nanostructures. IEEE. Trans. Nanotechnol. 2008, 7, 668-682.

8

Fields, L. L.; Zheng, J. P.; Cheng, Y.; Xiong, P. Roomtemperature low-power hydrogen sensor based on a single tin dioxide nanobelt. App. Phys. Lett. 2006, 88, 263102.

9

Chen, D.; Xu, J.; Xie, Z.; Shen, G. Z. Nanowires assembled SnO2 nanopolyhedrons with enhanced gas sensing properties. ACS Appl. Mater. Interfaces 2011, 3, 2112-2117.

10

Zhang, J.; Liu, X. H.; Neri, G.; Pinna, N. Nanostructured materials for room-temperature gas sensors. Adv. Mater. 2016, 28, 795-831.

11

Osborn, T. H.; Farajian, A. A. Silicenenanoribbons as carbon monoxide nanosensors with molecular resolution. Nano Res. 2014, 7, 945-952.

12

Xu, K.; LI, N.; Zeng, D. W.; Tian, S. Q.; Zhang, S. S.; Hu, D.; Xie, C. S. Interface bonds determined gas-sensing of SnO2-SnS2 hybrids to ammonia at room temperature. ACS Appl. Mater. Interfaces 2015, 7, 11359-11368.

13

Rout, C. S.; Hegde, M.; Govindaraj, A.; Rao, C. N. R. Ammonia sensors based on metal oxide nanostructures. Nanotechnology 2007, 18, 205504.

14

Chatterjee, S. G.; Chtterjee, S.; Ray, A. K.; Chakraborty, A. K. Graphene-metal oxide nanohybrids for toxic gas sensor: A review. Sens. Act. B. Chem. 2015, 221, 1170-1181.

15

Liu, W. L.; Liu, Y. Y.; Do, J. S.; Li, J. Highly sensitive room temperature ammonia gas sensor based on Ir-doped Pt porous ceramic electrodes. Appl. Surf. Sci. 2016, 390, 929-935.

16

Sunu, S. S.; Prabhu, E.; Jayaraman, V.; Gnanasekar, K. I.; Seshagiri, T. K.; Gnanasekaran, T. Electrical conductivity and gas sensing properties of MoO3. Sens. Act. B Chem. 2004, 101, 161-174.

17

Duy, L. T.; Trung, T. Q.; Dang, V. Q.; Hwang, B. U.; Siddiqui, S.; Son, I. Y.; Yoon, S. K.; Chung, D. J.; Lee, N. E. Flexible transparent reduced graphene oxide sensor coupled with organic dye molecules for rapid dual-mode ammonia gas detection. Adv. Funct. Mater. 2016, 26, 4329-4338.

18

Wang, B. H.; Ding, J. Q.; Zhu, T.; Huang, W.; Cui, Z. Q.; Chen, J. M.; Huang, L. Z.; Chi, L. F. Fast patterning of oriented organic microstripes for field-effect ammonia gas sensors. Nanoscale 2016, 8, 3954-3961.

19

Liu, X.; Chen, N.; Han, B. Q.; Xiao, X. C.; Chen, G.; Djerdj, I.; Wang, Y. D. Nanoparticle cluster gas sensor: Pt activated SnO2 nanoparticles for NH3 detection with ultrahigh sensitivity. Nanoscale 2015, 7, 14872-14880.

20

Cui, S. M.; Pu, H. H.; Mattson, E. C.; Lu, G. H.; Mao, S.; Weinert, M.; Hirschmugl, C. J.; Gajdardziska-Hosifovska, M.; Chen, J. H. Ag nanocrystal as a promoter for carbon nanotube-based room-temperature gas sensors. Nanoscale 2012, 4, 5887-5894.

21

Peng, N.; Zhang, Q.; Chow, C. L.; Tan, O. K.; Marzari, N. Sensing mechanisms for carbon nanotube based NH3 gas detection. Nano Lett. 2009, 9, 1626-1630.

22

Li, W. W.; Wang, X. F.; Liu, B.; Xu, J.; Liang, B.; Luo, T.; Luo, S. J.; Chen, D.; Shen, G. Z. Single-crystalline metal germanate nanowire-carbon textiles as binder-free, selfsupported anodes for high-performance lithium storage. Nanoscale 2013, 5, 10291-10299.

23

Li, W.; Yin, Y. X.; Xin, S.; Song, W. G.; Guo, Y. G. Low-cost and large-scale synthesis of alkaline earth metal germanate nanowires as a new class of lithium ion battery anode material. Energy Environ. Sci. 2012, 5, 8007-8013.

24

Liang, S. S.; Shang, M. M.; Lian, H. Z.; Li, K.; Zhang, Y.; Lin J. Deep red MGe4O9: Mn4+ (M = Sr, Ba) phosphors: Structure, luminescence properties and application in warm white light emitting diodes. J. Mater. Chem. C 2016, 4, 6409-6416.

25

Liu, Z.; Xu, J.; Chen, D.; Shen, G. Z. Flexible electronics based on inorganic nanowires. Chem. Soc. Rev. 2015, 44, 161-192.

26

Wu, H.; Huang, Y. A.; Xu, F.; Duan, Y. Q.; Yin, Z. P. Energy harvesters for wearable and stretchable electronics: From flexibility to stretchability. Adv. Mater. 2016, 28, 9881-9919.

27

Wang, X. F.; Lu, X. H.; Liu, B.; Chen, D.; Tong, Y. X.; Shen, G. Z. Flexible energy-storage devices: Design consideration and recent progress. Adv. Mater. 2014, 26, 4763-4782.

28

Wang, X. L.; Liu, J. Recent advancements in liquid metal flexible printed electronics: Properties, technologies, and applications. Micromachines, 2016, 7, 206.

29

Liu, B.; Zhang, J.; Wang, X. F.; Chen, G.; Chen, D.; Zhou, C. W.; Shen, G. Z. Hierarchical three-dimensional ZnCo2O4 nanowire arras/carbon cloth anodes for a novel class of high-performance flexible lithium-ion batteries. Nano Lett. , 2012, 12, 3005-3011.

30

Fu, K. K.; Cheng, J.; Li, T.; Hu, L. B. Flexible batteries: From mechanics to devices. ACS Energy Lett. 2016, 1, 1065-1079.

31

Sharma, B. K.; Ahn, J. H. Flexible and stretchable oxide electronics. Adv. Electron. Mater. 2016, 2, 1600105.

32

Xu, S.; Kan, K.; Yang, Y.; Jiang, C.; Gao, J.; Jing, L. Q.; Shen, P. K.; Li, L.; Shi, K. Enhanced NH3 gas sensing performance based on electrospun alkaline-earth metals composited SnO2 nanofibers. J. Alloys Compd. 2015, 618, 240-247.

33

Rai, P.; Yoon, J. W.; Kwak, C. H.; Lee, J. H. Role of Pd nanoparticles in gas sensing behaviour of Pd@In2O3 yolk-shell nanoreactors. J. Mater. Chem. A 2016, 4, 264-269.

34

Han, D. M.; Yang, J. J.; Gu, F. B.; Wang Z. H. Effects of rare earth element doping on the ethanol gas-sensing performance of three-dimensionally ordered macroporous In2O3. RSC Adv. 2016, 6, 45085-45092.

35

Liu, J. Y.; Dai, M. J.; Wang, T. S.; Sun, P.; Liang, X. S.; Lu, G. Y.; Shimanoe, K.; Yamazoe, N. Enhanced gas sensing properties of SnO2hollow spheres decorated with CeO2 nanoparticles heterostructure composite materials. ACS Appl. Mater. Interfaces 2016, 8, 6669-6677.

36

Pang, Z. Y.; Nie, Q. X.; Wei, A. F.; Yang, J.; Huang, F. L.; Wei, Q. F. Effect of In2O3 nanofiber structure on the ammonia sensing performances of In2O3/PANI composite nanofibers. J. Mater. Sci. 2017, 52, 686-695.

37

Wang, L. L.; Huang, H.; Xiao, S. H.; Cai, D. P.; Liu, Y.; Liu, B.; Wang, D. D.; Wang, C. X.; Li, H.; Wang, Y. R. et al. Enhanced sensitivity and stability of room-temperature NH3 sensors using core-shell CeO2 nanoparticles@ cross-linked PANI with p-n Heterojunctions. ACS Appl. Mater. Interfaces 2014, 6, 14131-14140.

38

Tai, H. L.; Yuan, Z.; Zheng, W. J.; Ye, Z. B.; Liu, C. H.; Du, X. S. ZnOnanoparticles/reduced graphene oxide bilayer thin films for improved NH3-sensing performances at room temperature. Nanoscale Res. Lett. 2016, 11, 130.

File
nr-11-1-431_ESM.pdf (1.2 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 11 March 2017
Revised: 21 April 2017
Accepted: 25 April 2017
Published: 10 August 2017
Issue date: January 2018

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany 2017

Acknowledgements

Acknowledgements

This work was supported by National Natural Science Foundation of China (Nos. 51672308, 61504136, 61625404), the Beijing Natural Science Foundation (No. 4162062), the Key Research Program of Frontiers Sciences, CAS (No. QYZDY-SSW-JSC004, and Beijing Municipal Science and Technology Project (No. Z17111000220000).

Return