Journal Home > Volume 10 , Issue 9

Although aligned arrays of semiconducting single-walled carbon nanotubes (s-SWNTs) are promising for use in next-generation electronics owing to their ultrathin bodies and ideal electrical properties, even a small portion of metallic (m-) counterparts causes excessive leakage in field-effect transistors (FETs). To fully exploit the benefits of s-SWNTs for use in large-scale systems, it is necessary to completely eliminate m-SWNTs from as-grown SWNT arrays and thereby obtain purely semiconducting large-area arrays, wherein numerous FETs can be flexibly built. In this study, we performed electrical burning of m-SWNTs assisted by water vapor and polymer coating to eliminate m-SWNTs over a long length for the scalable fabrication of transistors from the remaining s-SWNT arrays. During the electrical-breakdown process, the combination of water vapor and the polymer coating significantly enhanced the burning of the SWNTs, resulting in a self-sustained reaction along the nanotube axis. We found that m-SWNT segments partially remaining on the anode side resulted from one-way burning from the initial breakdown position, where Joule-heating-induced oxidation first occurred. The s-SWNT-enriched arrays obtained were used to fabricate multiple FETs with a high on-off current ratio. The results indicate the advantages of this approach over conventional electrical breakdown for the large-scale purification of s-SWNTs.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Water-assisted self-sustained burning of metallic single-walled carbon nanotubes for scalable transistor fabrication

Show Author's information Keigo Otsuka1Taiki Inoue1Yuki Shimomura1Shohei Chiashi1Shigeo Maruyama1,2( )
Department of Mechanical EngineeringThe University of Tokyo, 7-3-1 Hongo, Bunkyo-kuTokyo113-8656Japan
Energy NanoEngineering Lab.National Institute of Advanced Industrial Science and Technology (AIST), 1-2-1 NamikiTsukuba305-8564Japan

Abstract

Although aligned arrays of semiconducting single-walled carbon nanotubes (s-SWNTs) are promising for use in next-generation electronics owing to their ultrathin bodies and ideal electrical properties, even a small portion of metallic (m-) counterparts causes excessive leakage in field-effect transistors (FETs). To fully exploit the benefits of s-SWNTs for use in large-scale systems, it is necessary to completely eliminate m-SWNTs from as-grown SWNT arrays and thereby obtain purely semiconducting large-area arrays, wherein numerous FETs can be flexibly built. In this study, we performed electrical burning of m-SWNTs assisted by water vapor and polymer coating to eliminate m-SWNTs over a long length for the scalable fabrication of transistors from the remaining s-SWNT arrays. During the electrical-breakdown process, the combination of water vapor and the polymer coating significantly enhanced the burning of the SWNTs, resulting in a self-sustained reaction along the nanotube axis. We found that m-SWNT segments partially remaining on the anode side resulted from one-way burning from the initial breakdown position, where Joule-heating-induced oxidation first occurred. The s-SWNT-enriched arrays obtained were used to fabricate multiple FETs with a high on-off current ratio. The results indicate the advantages of this approach over conventional electrical breakdown for the large-scale purification of s-SWNTs.

Keywords: field-effect transistor, single-walled carbon nanotubes, selective removal, electrical breakdown, one-way burning

References(46)

1

Shulaker, M. M.; Hills, G.; Patil, N.; Wei, H.; Chen, H. Y.; Philip Wong, H. S.; Mitra, S. et al., Carbon nanotube computer, Nature 2013, 501, 526–530.

2

Franklin, A. D. et al., Electronics: The road to carbon nanotube transistors, Nature 2013, 498, 443–444.

3

Kocabas, C.; Hur, S. H.; Gaur, A.; Meitl, M. A.; Shim, M.; Rogers, J. A. et al., Guided growth of large-scale, horizontally aligned arrays of single-walled carbon nanotubes and their use in thin-film transistors, Small 2005, 1, 1110–1116.

4

Ago, H.; Nakamura, K.; Ikeda, K.; Uehara, N.; Ishigami, N.; Tsuji, M. et al., Aligned growth of isolated single-walled carbon nanotubes programmed by atomic arrangement of substrate surface, Chem. Phys. Lett. 2005, 408, 433–438.

5

Hu, Y.; Kang, L. X.; Zhao, Q. C.; Zhong, H.; Zhang, S. C.; Yang, L. W.; Wang, Z. Q.; Lin, J. J.; Li, Q. W.; Zhang, Z. Y. et al. et al., Growth of high-density horizontally aligned SWNT arrays using trojan catalysts, Nat. Commun. 2015, 6, 6099.

6

Kang, L. X.; Hu, Y.; Zhong, H.; Si, J.; Zhang, S. C.; Zhao, Q. C.; Lin, J. J.; Li, Q. W.; Zhang, Z. Y.; Peng, L. M. et al. et al., Large-area growth of ultra-high-density single-walled carbon nanotube arrays on sapphire surface, Nano Res. 2015, 8, 3694–3703.

7

Zhou, W. W.; Ding, L.; Yang, S.; Liu, J. et al., Synthesis of highdensity, large-diameter, and aligned single-walled carbon nanotubes by multiple-cycle growth methods, ACS Nano 2011, 5, 3849–3857.

8

Hong, S. W.; Banks, T.; Rogers, J. A. et al., Improved density in aligned arrays of single-walled carbon nanotubes by sequential chemical vapor deposition on quartz, Adv. Mater. 2010, 22, 1826–1830.

9

Shulaker, M. M.; Wei, H.; Payne, J.; Provine, J.; Chen, H. Y.; Philip Wong, H. S.; Mitra, S. et al., Linear increases in carbon nanotube density through multiple transfer technique, Nano Lett. 2011, 11, 1881–1886.

10

Engel, M.; Small, J. P.; Steiner, M.; Freitag, M.; Green, A. A.; Hersam, M. C.; Avouris, P. et al., Thin film nanotube transistors based on self-assembled, aligned, semiconducting carbon nanotube arrays, ACS Nano 2008, 2, 2445–2452.

11

Shekhar, S.; Stokes, P.; Khondaker, S. I. et al., Ultrahigh density alignment of carbon nanotube arrays by dielectrophoresis, ACS Nano 2011, 5, 1739–1746.

12

Cao, Q.; Han, S. J.; Tulevski, G. S. et al., Fringing-field dielectrophoretic assembly of ultrahigh-density semiconducting nanotube arrays with a self-limited pitch, Nat. Commun. 2014, 5, 5071.

13

Brady, G. J.; Way, A. J.; Safron, N. S.; Evensen, H. T.; Gopalan, P.; Arnold, M. S. et al., Quasi-ballistic carbon nanotube array transistors with current density exceeding Si and GaAs, Sci. Adv. 2016, 2, e1601240.

14

Zhou, W. W.; Zhan, S. T.; Ding, L.; Liu, J. et al., General rules for selective growth of enriched semiconducting single walled carbon nanotubes with water vapor as in situ etchant, J. Am. Chem. Soc. 2012, 134, 14019–14026.

15

Yang, F.; Wang, X.; Zhang, D. Q.; Yang, J.; Luo, D.; Xu, Z. W.; Wei, J. K.; Wang, J. Q.; Xu, Z.; Peng, F. et al. et al., Chirality-specific growth of single-walled carbon nanotubes on solid alloy catalysts, Nature 2014, 510, 522–524.

16

Kang, L. X.; Zhang, S. C.; Li, Q. W.; Zhang, J. et al., Growth of horizontal semiconducting SWNT arrays with density higher than 100 Tubes/μm using ethanol/methane chemical vapor deposition, J. Am. Chem. Soc. 2016, 138, 6727–6730.

17

Collins, P. G.; Arnold, M. S.; Avouris, P. et al., Engineering carbon nanotubes and nanotube circuits using electrical breakdown, Science 2001, 292, 706–709.

18

Zhang, G. Y.; Qi, P. F.; Wang, X. R.; Lu, Y. R.; Li, X. L.; Tu, R.; Bangsaruntip, S.; Mann, D.; Zhang, L.; Dai, H. J. et al., Selective etching of metallic carbon nanotubes by gas-phase reaction, Science 2006, 314, 974–977.

19

Jin, S. H.; Dunham, S. N.; Song, J. Z.; Xie, X.; Kim, J. -H.; Lu, C. F.; Islam, A.; Du, F.; Kim, J.; Felts, J. et al. et al., Using nanoscale thermocapillary flows to create arrays of purely semiconducting single-walled carbon nanotubes, Nat. Nanotechnol. 2013, 8, 347–355.

20

Li, J. H.; Franklin, A. D.; Liu, J. et al., Gate-free electrical breakdown of metallic pathways in single-walled carbon nanotube crossbar networks, Nano Lett. 2015, 15, 6058–6065.

21
Shulaker, M. M.; Pitner, G.; Hills, G.; Giachino, M.; Philip Wong, H. -S.; Mitra, S. High-performance carbon nanotube field-effect transistors. In 2014 IEEE International Electron Devices Meeting, San Francisco, CA, 2014, pp 33.6.1–33.6.4.https://doi.org/10.1109/IEDM.2014.7047164
DOI
22

Shulaker, M. M.; Van Rethy, J.; Hills, G.; Wei, H.; Chen, H. -Y.; Gielen, G.; Philip Wong, H. -S.; Mitra, S. et al., Sensor-todigital interface built entirely with carbon nanotube FETs, IEEE J. Solid-State Circ. 2014, 49, 190–201.

23

Patil, N.; Lin, A.; Zhang, J.; Wei, H.; Anderson, K.; Philip Wong, H. -S.; Mitra, S. et al., Scalable carbon nanotube computational and storage circuits immune to metallic and mispositioned carbon nanotubes, IEEE Trans. Nanotechnol. 2011, 10, 744–750.

24

Shulaker, M. M.; Van Rethy, J.; Wu, T. F.; Suriyasena Liyanage, L.; Wei, H.; Li, Z. Y.; Pop, E.; Gielen, G.; Philip Wong, H. -S.; Mitra, S. et al., Carbon nanotube circuit integration up to Sub-20 nm channel lengths, ACS Nano 2014, 8, 3434–3443.

25

Pop, E. et al., The role of electrical and thermal contact resistance for joule breakdown of single-wall carbon nanotubes, Nanotechnology 2008, 19, 295202.

26

Otsuka, K.; Inoue, T.; Chiashi, S.; Maruyama, S. et al., Selective removal of metallic single-walled carbon nanotubes in full length by organic film-assisted electrical breakdown, Nanoscale 2014, 6, 8831–8835.

27

Liao, A.; Alizadegan, R.; Ong, Z. -Y.; Dutta, S.; Xiong, F.; Hsia, K. J.; Pop, E. et al., Thermal dissipation and variability in electrical breakdown of carbon nanotube devices, Phys. Rev. B 2010, 82, 205406.

28

Xie, X.; Grosse, K. L.; Song, J. Z.; Lu, C. F.; Dunham, S.; Du, F.; Islam, A. E.; Li, Y. H.; Zhang, Y. H.; Pop, E. et al. et al., Quantitative thermal imaging of single-walled carbon nanotube devices by scanning joule expansion microscopy, ACS Nano 2012, 6, 10267–10275.

29

Otsuka, K.; Inoue, T.; Shimomura, Y.; Chiashi, S.; Maruyama, S. et al., Field emission and anode etching during formation of length-controlled nanogaps in electrical breakdown of horizontally aligned single-walled carbon nanotubes, Nanoscale 2016, 8, 16363–16370.

30

Homma, Y.; Chiashi, S.; Yamamoto, T.; Kono, K.; Matsumoto, D.; Shitaba, J.; Sato, S. et al., Photoluminescence measurements and molecular dynamics simulations of water adsorption on the hydrophobic surface of a carbon nanotube in water vapor, Phys. Rev. Lett. 2013, 110, 157402.

31

Cao, Q.; Xia, M. G.; Kocabas, C.; Shim, M.; Rogers, J. A.; Rotkin, S. V. et al., Gate capacitance coupling of singled-walled carbon nanotube thin-film transistors, Appl. Phys. Lett. 2007, 90, 23516.

32

Wahab, M. A.; Alam, M. A. et al., Implications of electrical crosstalk for high density aligned array of single-wall carbon nanotubes, IEEE Trans. Electron Dev. 2014, 61, 4273–4281.

33

Deng, S. B.; Tang, J. Y.; Kang, L. X.; Hu, Y.; Yao, F. R.; Zhao, Q. C.; Zhang, S. C.; Liu, K. H.; Zhang, J. et al., Highthroughput determination of statistical structure information for horizontal carbon nanotube arrays by optical imaging, Adv. Mater. 2016, 28, 2018–2023.

34

Matsui, K.; Tsuji, H.; Makino, A. A further study of the effects of water vapor concentration on the rate of combustion of an artificial graphite in humid air flow. Combust. Flame 1986, 63, 415–427.

35

Jensen, G. A. et al., The kinetics of gasification of carbon contained in coal minerals at atmospheric pressure, Ind. Eng. Chem. Process Des. Dev. 1975, 14, 308–314.

36

Ong, Z. -Y.; Pop, E. et al., Molecular dynamics simulation of thermal boundary conductance between carbon nanotubes and SiO2, Phys. Rev. B 2010, 81, 155408.

37

Chiashi, S.; Hanashima, T.; Mitobe, R.; Nagatsu, K.; Yamamoto, T.; Homma, Y. et al., Water encapsulation control in individual single-walled carbon nanotubes by laser irradiation, J. Phys. Chem. Lett. 2014, 5, 408–412.

38

Kim, W.; Javey, A.; Vermesh, O.; Wang, Q.; Li, Y. M.; Dai, H. J. et al., Hysteresis caused by water molecules in carbon nanotube field-effect transistors, Nano Lett. 2003, 3, 193–198.

39

Choi, W.; Hong, S.; Abrahamson, J. T.; Han, J. -H.; Song, C.; Nair, N.; Baik, S.; Strano, M. S. et al., Chemically driven carbon-nanotube-guided thermopower waves, Nat. Mater. 2010, 9, 423–429.

40

Pop, E.; Mann, D. A.; Wang, Q.; Goodson, K.; Dai, H. J. et al., Thermal conductance of an individual single-wall carbon nanotube above room temperature, Nano Lett. 2006, 6, 96–100.

41

Hida, S.; Hori, T.; Shiga, T.; Elliott, J.; Shiomi, J. et al., Thermal resistance and phonon scattering at the interface between carbon nanotube and amorphous polyethylene, Int. J. Heat Mass Transf. 2013, 67, 1024–1029.

42

Hirata, T.; Kashiwagi, T.; Brown, J. E. et al., Thermal and oxidative degradation of poly(methyl methacrylate): Weight loss, Macromolecules 1985, 18, 1410–1418.

43

Maruyama, S. A molecular dynamics simulation of heat conduction in finite length SWNTs. Phys. B: Condens. Matter 2002, 323, 193–195.

44

Maruyama, S.; Kojima, R.; Miyauchi, Y.; Chiashi, S.; Kohno, M. et al., Low-temperature synthesis of high-purity single-walled carbon nanotubes from alcohol, Chem. Phys. Lett. 2002, 360, 229–234.

45

Inoue, T.; Hasegawa, D.; Badar, S.; Aikawa, S.; Chiashi, S.; Maruyama, S. et al., Effect of gas pressure on the density of horizontally aligned single-walled carbon nanotubes grown on quartz substrates, J. Phys. Chem. C 2013, 117, 11804–11810.

46

Jiao, L. Y.; Fan, B.; Xian, X. J.; Wu, Z. Y.; Zhang, J.; Liu, Z. F. et al., Creation of nanostructures with poly(methyl methacrylate)-mediated nanotransfer printing, J. Am. Chem. Soc. 2008, 130, 12612–12613.

File
nr-10-9-3248_ESM.pdf (3.5 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 27 February 2017
Revised: 17 April 2017
Accepted: 24 April 2017
Published: 06 July 2017
Issue date: September 2017

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2017

Acknowledgements

Acknowledgements

Part of this work was financially supported by JSPS KAKENHI Grant Number JP15H05760, JP25107002, JP26420135 and JST-EC DG RTD within the Strategic International Collaborative Research Program (SICORP). This work was partly conducted at the Center for Nano Lithography & Analysis, VLSI Design and Education Center (VDEC), and at the Laser Alliance of the University of Tokyo. K. O. was financially supported by a JSPS Fellowship (No. JP15J07857).

Return