Journal Home > Volume 11 , Issue 1

Harvesting photosynthetic electrons (PEs) from plant or algal cells can be a highly efficient and environmentally friendly way of generating renewable energy. Recent work on nanoelectrode insertion into algal cells has demonstrated the possibility to directly extract PEs from living algal cells with high efficiencies. However, the instability of the inserted cells limits the practicality of this technology. Here, the impact of nanoelectrode insertion on intracellular extraction of PEs is characterized with the goal of stabilizing algal cells after nanoelectrode insertion. Using nanoelectrodes < 500 nm in diameter, algal cells remained stable for over one week after insertion and continued to provide PEs through direct extraction by the inserted nanoelectrodes. After nanoelectrode insertion, a photosynthetic current density of 6 mA·cm-2, which is several fold higher than the current densities attained using approaches based on isolated thylakoid membranes or photosystem Ⅰ complexes, was observed in the dark and during illumination at various light intensities.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Prolonged and highly efficient intracellular extraction of photosynthetic electrons from single algal cells by optimized nanoelectrode insertion

Show Author's information Hyeonaug Hong1Yong Jae Kim1Myungjin Han2Gu Yoo3Hyun Woo Song3Youngcheol Chae4Jae-Chul Pyun3Arthur R. Grossman5WonHyoung Ryu1( )
Department of Mechanical EngineeringYonsei UniversitySeoul03722Republic of Korea
Yonsei Institute of Convergence Technology and school of Integrated TechnologyYonsei UniversityIncheon21983Republic of Korea
Department of Materials Science & EngineeringYonsei UniversitySeoul03722Republic of Korea
Department of Electrical & Electronic EngineeringYonsei UniversitySeoul03722Republic of Korea
Department of Plant BiologyCarnegie Institution for ScienceDepartment of BiologyStanford UniversityStanfordCA94305USA

Abstract

Harvesting photosynthetic electrons (PEs) from plant or algal cells can be a highly efficient and environmentally friendly way of generating renewable energy. Recent work on nanoelectrode insertion into algal cells has demonstrated the possibility to directly extract PEs from living algal cells with high efficiencies. However, the instability of the inserted cells limits the practicality of this technology. Here, the impact of nanoelectrode insertion on intracellular extraction of PEs is characterized with the goal of stabilizing algal cells after nanoelectrode insertion. Using nanoelectrodes < 500 nm in diameter, algal cells remained stable for over one week after insertion and continued to provide PEs through direct extraction by the inserted nanoelectrodes. After nanoelectrode insertion, a photosynthetic current density of 6 mA·cm-2, which is several fold higher than the current densities attained using approaches based on isolated thylakoid membranes or photosystem Ⅰ complexes, was observed in the dark and during illumination at various light intensities.

Keywords: bio-solar energy, photosynthetic electrons, algal cells, nanoelectrode, cell insertion

References(39)

1

Gust, D.; Moore, T. A. Mimicking photosynthesis. Science 1989, 244, 35-41.

2

Blankenship, R. E.; Tiede, D. M.; Barber, J.; Brudvig, G. W.; Gleming, G.; Ghirardi, M.; Gunner, M. R.; Junge, W.; Kramer, D. M.; Melis, A. et al. Comparing photosynthetic and photovoltaic efficiencies and recognizing the potential for improvement. Science 2011, 332, 805-809.

3

Ryu, W.; Bai, S. J.; Park, J. S.; Huang, Z. B.; Moseley, J.; Fabian, T.; Fasching, R. J.; Grossman, A. R.; Prinz, F. B. Direct extraction of photosynthetic electrons from single algal cells by nanoprobing system. Nano Lett. 2010, 10, 1137-1143.

4

Rosenbaum, M.; He, Z.; Angenent, L. T. Light energy to bioelectricity: Photosynthetic microbial fuel cells. Curr. Opin. Biotechnol. 2010, 21, 259-264.

5

McCormick, A. J.; Bombelli, P.; Scott, A. M.; Philips, A. J.; Smith, A. G.; Fisher, A. C.; Howe, C. J. Photosynthetic biofilms in pure culture harness solar energy in a mediatorless bio-photovoltaic cell (BPV) system. Energy Environ. Sci. 2011, 4, 4699-4709.

6

Logan, B. E. Exoelectrogenic bacteria that power microbial fuel cells. Nat. Rev. Microbiol. 2009, 7, 375-381.

7

Malik, S.; Drott, E.; Grisdela, P.; Lee, J.; Lee, C.; Lowy, D. A.; Gray S.; Tender, L. M. A self-assembling self-repairing microbial photoelectrochemical solar cell. Energy Environ. Sci. 2009, 2, 292-298.

8

Manocchi, A. K.; Baker, D. R.; Pendley, S. S.; Nguyen, K.; Hurley, M. M.; Bruce, B. D.; Sumner, J. J.; Lundgren, C. A. Photocurrent generation from surface assembled photosystem Ⅰ on alkanethiol modified electrodes. Langmuir 2013, 29, 2412-2419.

9

LeBlanc, G.; Chen, G. P.; Gizzie, E. A.; Jennings, G. K.; Cliffel, D. E. Enhanced photocurrents of photosystem Ⅰ films on p-doped silicon. Adv. Mater. 2012, 24, 5959-5962.

10

LeBlanc, G.; Gizzie, E.; Yang, S. Y.; Cliffel, D. E.; Jennings, G. K. Photosystem Ⅰ protein films at electrode surfaces for solar energy conversion. Langmuir 2014, 30, 10990-11001.

11

Maly, J.; Masojidek, J.; Masci, A.; Ilie, M.; Cianci, E.; Foglietti, V.; Vastrella, W.; Pilloton, R. Direct mediatorless electron transport between the monolayer of photosystem Ⅱ and poly(mercapto-p-benzoquinone) modified gold electrode-New design of biosensor for herbicide detection. Biosens. Bioelectron. 2005, 21, 923-932.

12

Terasaki, N.; Iwai, M.; Yamamoto, N.; Hiraga, T.; Yamada, S.; Inoue, Y. Photocurrent generation properties of Histag- photosystem Ⅱ immobilized on nanostructured gold electrode. Thin Solid Films 2008, 516, 2553-2557.

13

Yehezkeli, O.; Tel-Vered, R.; Michaeli, D.; Nechushtai, R.; Willner, I. Photosystem Ⅰ (PSI)/photosystem Ⅱ (PSⅡ)-based photo-bioelectrochemical cells revealing directional generation of photocurrents. Small 2013, 9, 2970-2978.

14

Yehezkeli, O.; Tel-Vered, R.; Wasserman, J.; Trifonov, A.; Michaeli, D.; Nechushtai, R.; Willner, I. Integrated photosystem Ⅱ-based photo-bioelectrochemical cells. Nat. Commun. 2012, 3, 742.

15

Feng, X. Y.; Jia, Y.; Cai, P.; Fei, J. B.; Li, J. B. Coassembly of photosystem Ⅱ and ATPase as artificial chloroplast for light-driven ATP synthesis. ACS Nano 2016, 10, 556-561.

16

Li, J.; Feng, X. Y.; Fei, J. B.; Cai, P.; Huang, J. G.; Li, J. B. Integrating photosystem Ⅱ into a porous TiO2 nanotube network toward highly efficient photo-bioelectrochemical cells. J. Mater. Chem. A 2016, 4, 12197-12204.

17

McKelvey, K.; Martin, S.; Robinson, C.; Unwin, P. R. Quantitative local photosynthetic flux measurements at isolated chloroplasts and thylakoid membranes using scanning electrochemical microscopy (SECM). J. Phys. Chem. B 2013, 117, 7878-7888.

18

Calkins, J. O.; Umasankar, Y.; O'Neill, H.; Ramasamy, R. P. High photo-electrochemical activity of thylakoid-carbon nanotube composites for photosynthetic energy conversion. Energy Environ. Sci. 2013, 6, 1891-1900.

19

Hasan, K.; Dilgin, Y.; Emek, S. C.; Tavahodi, M.; Åkerlund, H. E.; Albertsson, P. Å.; Gorton, L. Photoelectrochemical communication between thylakoid membranes and gold electrodes through different quinone derivatives. ChemElectroChem 2014, 1, 131-139.

20

Reguera, G.; McCarthy, K. D.; Mehta, T.; Nicoll, J. S.; Tuominen, M. T.; Lovley, D. R. Extracellular electron transfer via microbial nanowires. Nature 2005, 435, 1098-1101.

21

Gorby, Y. A.; Yanina, S.; McLean, J. S.; Rosso, K. M.; Moyles, D.; Dohnalkova, A.; Beveridge, T. J.; Chang, I. S.; Kim, B. H.; Kim, K. S. et al. Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. Proc. Natl. Acad. Sci. USA 2006, 103, 11358-11363.

22

Bradley, R. W.; Bombelli, P.; Rowden, S. J. L.; Howe, C. J. Biological photovoltaics: Intra-and extra-cellular electron transport by cyanobacteria. Biochem. Soc. Trans. 2012, 40, 1302-1307.

23

Logan, B. E.; Hamelers, B.; Rozendal, R.; Schröder, U.; Keller, J.; Freguia, S.; Aelterman, P.; Verstraete, W.; Rabaey, K. Microbial fuel cells: Methodology and technology. Environ. Sci. Technol. 2006, 40, 5181-5192.

24

Bombelli, P.; Bradley, R. W.; Scott, A. M.; Philips, A. J.; McCormick, A. J.; Cruz, S. M.; Anderson, A.; Yunus, K.; Bendall, D. S.; Cameron, P. J. et al. Quantitative analysis of the factors limiting solar power transduction by Synechocystis sp. PCC 6803 in biological photovoltaic devices. Energy Environ. Sci. 2011, 4, 4690-4698.

25

Esper, B.; Badura, A.; Rögner, M. Photosynthesis as a power supply for (bio-)hydrogen production. Trends Plant Sci. 2006, 11, 543-549.

26

Ciesielski, P. N.; Hijazi, F. M.; Scott, A. M.; Faulkner, C. J.; Beard, L.; Emmett, K.; Rosenthal, S. J.; Cliffel, D.; Jennings, G. K. Photosystem Ⅰ-based biohybrid photoelectrochemical cells. Bioresource Technol. 2010, 101, 3047-3053.

27

Robinson, J. T.; Jorgolli, M.; Shalek, A. K.; Yoon, M. H.; Gertner, R. S.; Park, H. Vertical nanowire electrode arrays as a scalable platform for intracellular interfacing to neuronal circuits. Nat. Nanotechnol. 2012, 7, 180-184.

28

Na, Y. R.; Kim, S. Y.; Gaublomme, J. T.; Shalek, A. K.; Jorgolli, M.; Park, H.; Yang, E. G. Probing enzymatic activity inside living cells using a nanowire-cell "sandwich" assay. Nano Lett. 2013, 13, 153-158.

29

Xie, X.; Xu, A. M.; Leal-Ortiz, S.; Cao, Y. H.; Garner, C. C.; Melosh, N. A. Nanostraw-electroporation system for highly efficient intracellular delivery and transfection. ACS Nano 2013, 7, 4351-4358.

30

Hanson, L.; Lin, Z. C.; Xie, C.; Cui, Y.; Cui, B. X. Characterization of the cell-nanopillar interface by transmission electron microscopy. Nano Lett. 2012, 12, 5815-5820.

31

Xie, X.; Xu, A. M.; Angle, M. R.; Tayebi, N.; Verma, P.; Melosh, N. A. Mechanical model of vertical nanowire cell penetration. Nano Lett. 2013, 13, 6002-6008.

32

Xu, A. M.; Aalipour, A.; Leal-Ortiz, S.; Mekhdjian, A. H.; Xie, X.; Dunn, A. R.; Garner, C. C.; Melosh, N. A. Quantification of nanowire penetration into living cells. Nat. Commun. 2014, 5, 3613.

33

Almquist, B. D.; Melosh, N. A. Fusion of biomimetic stealth probes into lipid bilayer cores. Proc. Natl Acad. Sci. USA 2010, 107, 5815-5820.

34

Almquist, B. D.; Verma, P.; Cai, W.; Melosh, N. A. Nanoscale patterning controls inorganic-membrane interface structure. Nanoscale 2011, 3, 391-400.

35

Falk, S.; Leverenz, J. W.; Samuelsson, G.; Öquist, G. Changes in photosystem Ⅱ fluorescence in Chlamydomonas reinhardtii exposed to increasing levels of irradiance in relationship to the photosynthetic response to light. Photosynth. Res. 1992, 31, 31-40.

36

Yang, Y.; Gao, K. S. Effects of CO2 concentrations on the freshwater microalgae, Chlamydomonas reinhardtii, Chlorella pyrenoidosa and Scenedesmus obliquus (Chlorophyta). J. Appl. Phycol. 2003, 15, 379-389.

37

Mershin, A.; Matsumoto, K.; Kaiser, L.; Yu, D. Y.; Vaughn, M.; Nazeeruddin, M. K.; Bruce, B. D.; Graetzel, M.; Zhang, S. G. Self-assembled photosystem-Ⅰ biophotovoltaics on nanostructured TiO2 and ZnO. Sci. Rep. 2012, 2, 234.

38

Meunier, C. F.; Van Cutsem, P.; Kwon, Y. U.; Su, B. L. Thylakoids entrapped within porous silica gel: Towards living matter able to convert energy. J. Mater. Chem. 2009, 19, 1535-1542.

39

Sjöholm, K. H.; Rasmussen, M.; Minteer, S. D. Bio-solar cells incorporating catalase for stabilization of thylakoid bioelectrodes during direct photoelectrocatalysis. ECS Electrochem. Lett. 2012, 1, G7-G9.

File
nr-11-1-397_ESM.pdf (656.7 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 07 January 2017
Revised: 19 April 2017
Accepted: 23 April 2017
Published: 22 June 2017
Issue date: January 2018

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany 2017

Acknowledgements

Acknowledgements

We would like to acknowledge the financial supports by the National Research Foundation of Korea (NRF) grant funded by the Ministry of Science, ICT and Future Planning (MSIP) of Korea government (No. 2011-0020285) as well as by the Center for Advanced Meta-Materials (CAMM) funded by the MSIP as Global Frontier Project (No. CAMM-2014M3A6B3063716). The authors thank Jae Hyung Yun at Yonsei University for the help with fabrication of glass micropipettes. The contribution of A. R. G. was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences (No. DE-SC0001060) and the National Science Foundation (No. MCB-0951094)

Return